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Abstract
Human experts as autonomous agents in a referral network must decide whether

to accept a task or refer to a more appropriate expert, and if so to whom. In order

for the referral network to improve over time, the experts must learn to estimate the

topical expertise of other experts. This thesis extends concepts from Multi-agent Re-

inforcement Learning and Active Learning to referral networks. Among a wide array

of algorithms evaluated, Distributed Interval Estimation Learning (DIEL), based on

Interval Estimation Learning, was found to be promising for learning appropriate

referral choices, compared to Greedy, Q-learning, Thompson Sampling

and Upper Confidence Bound (UCB) methods. DIEL’s rapid performance gain in

the early phase of learning makes it a practically viable algorithm, including when

multiple referral hops are allowed. In addition to a synthetic data set, we compare

the performance of several top-performing referral algorithms on a referral network

of high-performance Stochastic Local Search (SLS) solvers for the propositional

satisfiability problem (SAT). Our experimental results demonstrate that the referral

learning algorithms can learn appropriate referral choices in the real task of solv-

ing satisfiability problems where expertise does not obey any known parameterized

distribution. Apart from evaluating overall network performance, we conduct a ro-

bustness analysis across the learning algorithms, with an emphasis on capacity con-

straints (limits on number of tasks per time period), evolving networks (changes in

connectivity or agents joining or leaving the referral network) and expertise drift

(skills improving over time or atrophying through disuse) — situations that often

arise in real-world scenarios but are largely ignored in the Active Learning litera-

ture. Several high-performance referral learning algorithms proved to be robust to

capacity constraints and evolving networks, while Hybrid, a novel combination

of multiple algorithms, proved the most resilient to expertise drift. In an augmented

learning setting, where experts may report their top skills to their colleagues, we pro-

posed three algorithms, proactive-DIEL, proactive-Q-Learning, and proactive-ε-

Greedy. All algorithms exhibited robustness to noisy self-skill estimates, evolving

networks and strategic misreporting.
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Chapter 1

Introduction

Whom do you ask when you don’t know whom to ask?

Consider a network of experts with differing expertise, where any expert may receive a prob-

lem (aka a task or a query) and must decide whether to work on it or to refer the problem, and if

so to which other expert. For instance, in a clinical network, a physician may diagnose and treat

a patient or refer the patient to another physician whom she believes may have more appropriate

knowledge, given the presenting symptoms. The referring physician may charge a referral fee

and the receiving physician may charge a larger fee for diagnosing and treating the patient. Refer-

ral networks are common across other professions as well, such as members of large consultancy

firms. If the experts are software agents, then the need for referral may be greater, given the likely

narrower “expertise” typical of intelligent agents (including old-style expert systems). We can

also envision a hybrid referral network comprising automated agents and possibly crowd-source

human experts.

How does a network or how do individual experts in the network learn to refer effectively?

Human referral networks are neither hardwired nor static. Potentially much larger networks of

automated experts or hybrid networks with dynamic membership must likewise learn to refer

with membership and expertise drift – and that learning should be distributed, without any “boss

agent” telling all the others when to try and solve a problem or when to refer and if so to whom.

In this thesis, we explore and extend several well-known reinforcement learning algorithms

to meet this learning-to-refer challenge. Rather than focusing on agents and problem-solving

mechanisms, our primary focus is on this new Distributed Active Learning approach in referral

networks. Crowdsourcing (Yuen et al., 2011) remains popular in labeling tasks (Cheng and Bern-

stein, 2015; Ahn et al., 2006), but also for more complex tasks requiring targeted skills (Bernstein

et al., 2010; Yu, 2011; Yu and Nickerson, 2013; Heimerl et al., 2012). We see our work as a con-
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fluence of these trends, where agents (e.g., experts, turkers, autonomous systems) have varying

expertise, and targeting the right agent to the right job is key.

We see our work as a logical extension to Proactive Learning, that addressed several factors

that arise in a real-world Active Learning setting. In many modern-day Machine Learning do-

mains, the volume of labeled data is substantially smaller than the volume of unlabeled data,

and in general, obtaining labeled samples is much harder than obtaining unlabeled samples. For

instance, amassing a large pool of images by crawling a photo-sharing site like Flickr is much

easier than collecting photos labeled with abstract concepts like ‘war’ or ‘loneliness’. Since la-

beling comes with a cost, and usually all data-points are not equally informative, seeking labels

for highly informative data points is often an efficient learning strategy. To this end, Active

Learning, a Machine Learning paradigm where the learner takes an active role in the learning

process by choosing which data points to label, is often found to be effective.

In Active Learning, the learning method is provided an initial seed set of a small number

of labeled samples and a larger pool of unlabeled instances. The objective is to select optimal

data instances to label such that the learning method when trained with the additional data, will

improve its performance. While Active Learning (Lewis and Catlett, 1994; Lewis and Gale,

1994; Settles, 2010) continues to remain a useful tool for decades, several assumptions of Active

Learning do not hold in practical scenarios. For instance, Active Learning assumes presence of

just one, omniscient, indefatigable, infallible oracle whereas most modern day learning tasks in-

volve multiple annotators with varying accuracy and expertise. Proactive Learning (Donmez and

Carbonell, 2008; Donmez et al., 2010a) has relaxed these assumptions along several dimensions

and proposed methods to deal with multiple, fallible annotators with time-varying accuracy.

In this thesis, we focus on an aspect not considered in Proactive Learning or any previous

Active Learning literature: communication between experts in the form of referrals. With mod-

ern day machine learning applications reaching sophistication to a point that the labeling task

often needs specialized expertise (is this musical piece Acid Jazz or Bebop? or, is the paint-

ing in Figure 1.1(a) Fauvist or impressionist1? or, with White to move, is the Chess position

shown in Figure 1.1(b) a forced-win for White?), it is impractical to assume oracles would be

omniscient, having equally strong skills/knowledge across different tasks/topics. Hence, com-

munication between experts and the ability to redirect difficult instances to one another based on

their topical expertise would be crucial for future applications. To address this gap in the Ac-

tive Learning literature, we introduce referral network, a new Active Learning framework where

experts (teachers or agents) can redirect difficult instances to their colleagues.

Whom do you refer when your top-choice abruptly departs the network, or gets unresponsive

1Image source: https://en.wikipedia.org/wiki/Fauvism
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(a) Fauvist or Impressionist? (b) With White to move, is this end-game a
forced win for White?

Figure 1.1: Questions requiring specialized expertise

due to workload, or gradually loses her skills? Several practical factors can hinder or help the

learning-to-refer challenge. For example, a sudden departure of a strong colleague can necessi-

tate an immediate lookout for an alternative. Similarly, arrival of a strong expert for some topic

areas in the network will only be useful when the colleagues are able to quickly identify her as

one and hence refer appropriate tasks to her. The colleague can proactively share this information

to expedite the search, but her own estimates of her skills could be noisy (she could strategically

lie to attract more business as well!). An extremely skilled expert but who is too-busy-to-answer

would also require fallback options. Also, experts who got dismissed as weak can improve their

skill requiring the referral learning algorithms to have a balanced re-sampling and re-estimation

approach. Many such considerations are often swept under the proverbial rug of Active Learning

assumptions. In this thesis, we both consider these factors while assessing the performance of

algorithms and design new algorithms to meet these challenges better.

While this thesis is primarily focused on the big picture, that is, how to learn referrals in

a large distributed setting under various conditions, the techniques presented are fairly general

and can be applied to a standalone multi-armed bandit setting (a gambler trying to optimize the

total amount of reward she receives by pulling one of the k arms at a time, each arm has an un-

known reward distribution). Specifically, our work on expertise drift and proactive skill posting

addressing the cold-start problem (KhudaBukhsh et al., 2016a,b, 2017a) could be of interest

to the larger bandit community. Also, referral learning could be combined with other forms of

learning, a case we have not addressed in this thesis. For instance, the problem-solving skills of

an expert can improve over time through learning from the solutions received through referrals.
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In addition to learning how to refer better, such other forms of learning would also improve the

overall performance of the network. We have considered drift-scenarios where experts largely

improve over time (see, Chapter 4.3); however, no other form of learning of experts is explicitly

modeled (i.e., with specified learning rate parameters) in this thesis.

In what follows, we first illustrate our referral mechanism with a toy example of a five-expert

referral network in which we demonstrate how effective referrals can dramatically improve the

network performance. Next, we outline the three major research directions we pursued in this

thesis and highlight our contributions. We end this chapter with a road-map to the rest of the

thesis.

1.1 Referral Mechanism

e1

e2

e3e4

e5

0.4, 0.7, 0.9 

0.5, 0.2, 0.7 

0.3, 0.8, 0.4 

0.8, 0.2, 0.1 

0.6, 0.6, 0.6 

Figure 1.2: A referral network with five experts

Our referral model assumes an initial sparse topology of a referral graph where each expert

knows a handful of colleagues so that E ∼ O(V ) (E and V denote the number of edges and

vertexes in the network, respectively). Learning consists of each expert improving its estimates

of the ability of colleagues to solve different classes of problems. These colleague experts may

be in the initial network, or added to the network over time as the network topology evolves.

We illustrate the referral mechanism and its effectiveness with the simple graph of Figure 1.2

which represents a network of five experts. The nodes of the graph are the experts, and the

edges indicate that the experts ‘know’ each other, that is, they can send or receive referrals and

4



communicate results. In the domain, three different topics (subdomains) can be distinguished –

call them t1, t2, and t3 – and the figures in brackets indicate an expert’s expertise in each of these.

In this referral network, with a query belonging to t2, if there was no referral, the client

may consult first e2 and then possibly e5, leading to a probability of getting the correct answer of

0.2+(1−0.2)×0.2 = 0.36. With referrals, an expert handles a problem she knows how to answer,

and otherwise if she had knowledge of all the other experts’ expertise she could ask e2 who would

refer to e3 for the best skill in t2, leading to a solution probability of 0.2+(1−0.2)×0.8 = 0.84.

For a query budget Q of 2, the steps in our learning setting are the following.

1. A user issues qj ( initial query ) to a randomly chosen expert ei (initial expert)

2. Initial expert ei examines the instance and solves it if possible. This depends on the exper-

tise of ei wrt. qj .

3. If not, a referral query is issued by ei to a referred expert, ej , within her subnetwork.

Learning-to-refer involves improving the estimate of who is most likely to solve the prob-

lem.

4. If the referred expert succeeds, she communicates the solution to the initial expert, who in

turn, communicates it to the user.

The first two steps in our referral network are identical to Active Learning. Step 3 and 4

are the extension to the Active Learning setting proposed in this work. Understandably, with

a higher per-instance query budget, step 4 can loop back to step 2 and the referred expert can

re-refer instances to other experts as long as budget permits.

In the above example, even with referrals, e2 could redirect the instance to e5 when she

does not know e3 is the strongest colleague in that topic, leading to no improvement in the

solution probability. Hence, for effective referrals, close-to-accurate estimations of colleagues’

topical expertise is crucial. Obtaining such estimations is the learning-to-refer challenge we are

addressing in this thesis. Essentially, learning-to-refer involves querying one colleague at a time

balancing exploration (search for stronger experts) and exploitation (referring more problems

to the strongest expert found so far) and improving the estimates with newer observations. In

the most general setting, the starting point could be completely uninformative prior where an

expert has no information about the strengths and weaknesses of her colleagues. We evaluated

the performance of a wide array of reinforcement learning algorithms existing in the literature in

this setting. However, in real world, colleagues often share information about their strengths. We

model this assumption in an augmented learning setting dubbed proactive skill posting. In both

cases, the learning is distributed, i.e., each expert learns to improve its referral strategies from its

unique vantage point in the referral network, greatly increasing the need for referral algorithms
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that learn fast. In the following section, we present a structured outline of our three primary

research directions.

1.2 Research Directions

Expertise drift
Evolving networks

Capacity constraints

Proactive skill posting

Uninformed prior
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Figure 1.3: Research directions in learning-to-refer: blue denotes successful research results

As shown in Figure 1.3, the primary research thrusts on referral networks span three largely

orthogonal dimensions: use of prior knowledge, learning-to-refer algorithms and robustness to a

dynamically evolving environment. A blue surface indicates availability of positive experimental

results involving the labels on the corresponding axes. Along the algorithm axis, we show a sub-

set of representative algorithms to illustrate our contributions (for a complete list of algorithms,

see Table 3.4).

In terms of availability of priors, we address learning-to-refer in two primary conditions: a)

uninformative priors, which presents a cold-start problem of forming initial reliable estimates of

colleagues’ topical expertise, and b) informative priors where agents proactively advertise their

stronger skills to their colleagues. Our first line of exploratory study focuses on assessing the

viability of our proposed learning setting through comparative evaluation of referral learning

algorithms, while our second direction is closer to real-world setting as in practice, experts often

do not start from completely uninformative prior. Moreover, in real life, we often see that experts

clearly mention which type of tasks they are particularly good at and also often forge links to their

colleagues via social networks. In turn, their colleagues may re-estimate their beliefs of expertise

levels based on actual performance. In our augmented learning setting, dubbed proactive skill
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posting, a one-time local-network advertisement of a subset of skills is allowed. In addition

to designing algorithms that take advantage of such advertised priors, we focus on resilience

to dynamic addition/drop off of experts in the network, noisy self-skill estimation and strategic

lying.

The algorithmic investigations primarily focus on:

1. evaluating algorithms with known finite-time regret bounds (e.g., Upper Confidence Bound

(UCB) variants, Thompson Sampling variants) or strong empirical performance (e.g.,

Interval Estimation Learning), developing novel algorithms or new variants (e.g., Pessimistic

TS-DIEL), and hybrid algorithms, and testing them both on synthetic and non-synthetic

data.

2. designing proactive-posting versions of the algorithms to take advantage of advertised pri-

ors, and evaluating these both on synthetic data and non-synthetic data.

3. empirical analysis of tolerance to noisy-skill estimates and strategic lying and theoretical

analysis of incentive compatibility in the limit.

Along the robustness axis, we focus on:

1. Capacity constraints: The theoretical assumption that an oracle can handle an unbounded

number of requests within a specific time period is impractical. In our work, we relax

this assumption and consider experts can only handle a limited number of tasks within a

specific time period beyond which it becomes over-loaded and refuses to solve any further

task until load situation improves. We evaluate our referral-learning algorithms under this

assumption varying the parameter that sets the limit to task-threshold.

2. Evolving networks: In practice, the composition of network may change with time through

joining/leaving of new/old experts and forging/breaking of new/existing links between ex-

perts. We considered evolving networks both in our uninformed prior setting and proactive

skill posting setting. In uninformed prior setting, the challenge is to quickly find alterna-

tive experts when a strong expert leaves and rapid identification of strength areas of newly

joined experts. In proactive skill posting, the challenge is to elicit truthful prior advertise-

ments to expedite the integration of the newly joined experts.

3. Expertise drift: Experts can improve over time through practice, acquisition of new skill

or degrade due to fatigue, age and disuse of skills etc. Tracking expertise drift is crucial

for a referral network’s overall performance as experts dismissed early for being weak can

end up being strong contenders for future referrals. Inability to identify such late bloomers

or sticking long with experts who were once highly-skilled but gradually lost their sheen

could negatively affect network performance.
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Not forming a major research direction in the thesis, but from an evaluation perspective, one

important point we had to address was to identify real-world data set on which we can test the

performance of referral learning algorithms in the wild. For this, we would need multiple experts

with varying topical expertise on several topics. We took a novel approach in our non-synthetic

data set design; we constructed several referral networks of high-performance solvers for the

propositional satisfiability problem (SAT) where solvers map to experts, topic map to SAT dis-

tributions (e.g., quasi-group completion problem, bounded model checking, factoring etc.) and

the task is the real task of solving a SAT instance. While these solvers already existed (Khud-

aBukhsh et al., 2009, 2016d), the use of these solvers in the context of referral learning or even

the more general multi-armed bandit setting was never done before.

1.2.1 Contributions

Our three main contributions in this thesis are the following:

1. We propose referral network, a novel Active Learning setting where experts (agents or

teachers) can redirect difficult instances to one another. Through a series of experiments on

synthetic and non-synthetic data, we establish the viability of referral networks even with

uninformative priors as several algorithms (most prominently, Distributed Interval

Estimation Learning, DIEL) proved to meet the distributed learning-to-refer chal-

lenge including when multi-hop referrals are allowed.

2. We propose proactive skill posting, an augmented learning setting where experts are al-

lowed one-time local-network advertisement of a subset of their skills. We design proac-

tive versions, a class of modified referral algorithms that takes advantage of such advertised

priors in a manner resilient to strategic lying and noisy self-skill estimates.

3. We perform a thorough robustness analysis of these algorithms considering factors like ca-

pacity constraints (limits on number of tasks per time period), evolving networks (changes

in connectivity or agents joining or leaving the referral network) and expertise drift (skills

improving over time or atrophying through disuse). For expertise drift, we propose Hybrid

a novel combination of Optimistic Thompson Sampling, Pessimistic Thompson

Sampling and DIEL which were most resilient against drift. For evolving networks, we

proposed proactive-DIEL which could withstand a large amount of network change at

regular interval without much loss of performance.
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1.3 Thesis Organization

The rest of the thesis is organized in the following way. We present the literature relevant to

our contributions in Chapter 2. Our three contributions are presented in the following three

chapters. In Chapter 3, we focus on the uninformative prior setting and present our initial set

of assumptions related to expertise, network and reward, and our data sets (synthetic and non-

synthetic), describe a wide pool of referral-learning algorithms we considered and analyze their

performance both on single-hop and multi-hop referral settings. In Chapter 4, we assess the

robustness of our referral-learning algorithms under several robustness criterion, mainly focus-

ing at capacity constraints, evolving networks and expertise drift with expertise drift requiring

novel algorithm design. In Chapter 5, we present our augmented learning setting, proactive skill

posting where experts are allowed a one-time local network advertisement of a subset of their

skills to their colleagues. In this chapter, the key challenges are robustness to noisy self-skill

estimates and tolerance to strategic lying. We also revisited the problem of evolving networks

and evaluated the performance of algorithms when skill posting is allowed. Finally, in Chapter

6, we summarize our contributions and outline future research directions.
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Chapter 2

Related Work

In this chapter, we present a literature review of prior work relevant to our contributions. We

break down the chapter in the following way. First, we present prior work relevant to the referral

framework, and DIEL, the top-performing algorithm in our uninformative prior setting. Next,

we discuss prior research related to our three major stress areas in robustness analysis: capacity

constraints, evolving networks and expertise drift, after which, we compare and contrast with

literature relevant to our augmented learning setting, proactive skill posting. We finally conclude

with pointing to literature related to some additional aspects and our real-world data set.

2.1 Referral Framework

The inspiration for the referral framework dates back to referral chaining, first proposed in (Kautz

et al., 1996) and subsequently extended in (Foner, 1997; Yolum and Singh, 2003; Yu, 2002; Yu

et al., 2003; Yu and Singh, 2003). In particular, Yu’s dissertation (Yu, 2002) made an extensive

study of the properties of a simulated referral network under various conditions several of which

are consistent with the simulated networks in this thesis. However, Yu’s work made a demar-

cation between expertise and referring capabilities: agent’s expertise (her own ability to solve

problems) and sociability (her own ability to refer) and consider both co-operative and non-co-

operative agents in the networks who are identified using a reputation based system. In contrast,

in our work, we make no distinction between sociability and expertise in multi-hop settings and

experts who are connected through referral links are assumed to be collaborative (in proactive

skill posting, experts may misreport their skills). Moreover, Yu’s work did not address learning

to refer, capacity constraints, or dynamic adaptation. Beyond synthetic data, we evaluated the

performance of several referral learning algorithms on a SAT solver data set, where neither ex-

pertise nor noise in estimating self-skill obeys any known parameterized distribution. Also, we
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moved beyond the initial referral framework through augmenting the learning setting with a one

time local-network advertisement of a subset of skills and proposed modified algorithms that can

take advantage of such partially available noisy priors.

Among the referral learning algorithms we considered, Distributed Interval Estimation Learn-

ing (DIEL) performed the best in the static expertise scenario and a modified version, proactive-

DIEL, proved to be the strongest in the proactive skill posting setting. DIEL built upon earlier re-

search on interval estimation learning (IEL). IEL, a reinforcement learning technique that strikes

a balance between exploration and exploitation by combining mean and variance of the observed

rewards (as opposed to a strategy that switches between the two, such as in (Osugi and Scott,

2005).), was first proposed in (Kaelbling, 1993; Kaelbling et al., 1996). In the context of Active

Learning, IEL has been successfully used in jointly learning the accuracy of labeling sources

and obtaining the most informative labels in (Donmez et al., 2009a). IEL is used to compute

expected rewards of individual oracles and then a multiplicative threshold on the best oracle’s

performance is used to eliminate inferior oracles. We used the version from (Donmez et al.,

2009a) as the basis of our DIEL method, adjusting for key differences such as the fact that learn-

ing in referral networks is distributed, that is, each expert learns to improve its labeling strategy

from its unique vantage point in the referral network, greatly increasing computational challenges

of our simulation. Unlike (Donmez et al., 2009a), in this work we consider heterogeneous tasks

and the primary challenge is to estimate topical expertise. While designing proactive-DIEL, an

algorithm that takes advantage of proactive skill posting, we found that dropping the student-t

distribution parameter improved DIEL’s performance in the early learning phase (KhudaBukhsh

et al., 2016a). We used the modified version for all of the subsequent experiments.

The problem of learning appropriate referrals can be cast in various ways. One direction

we considered was multi-armed bandit selection problem. From each expert’s point of view,

the core problem of learning appropriate referrals for a given topic is viewed as a mutli-armed

bandit (MAB) problem where referral choices are the arms. The three robustness criterion we

focused on: capacity constraints, evolving networks and expertise drift, map to the sleeping ban-

dits (Kleinberg et al., 2010), mortal bandits (Chakrabarti et al., 2009) and restless bandits (Whit-

tle, 1988) in the literature, respectively. Accordingly, we enlisted several multi-armed bandit

algorithms (Agrawal, 1995; Lai and Robbins, 1985; Audibert et al., 2007) for performance com-

parison . However, there is an obvious difference in scale as we are dealing with multiple agents

learning several threads of referral policies for each topic and none of these algorithms has been

used in the context of referral learning before nor in similar distributed network learning. Sim-

ilarly, we also included Q-Learning variants (van Hasselt, 2010; Watkins and Dayan,

1992) and Thompson Sampling variants (Thompson, 1933; May et al., 2012) for compara-
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tive analysis which haven’t been explored in this context before. A detailed description of our

referral algorithms is presented in section 3.4 along with additional relevant literature.

An analysis of referral networks also exhibits similarities with the study of task alloca-

tion (Abdallah and Lesser, 2006; Zhang et al., 2009; Zhang and Lesser, 2007), where minimiz-

ing turn-around time corresponds to the maximizing the probability of a correct answer. Studies

were made of network changes and load balancing for distributed reinforcement learning (Zhang

et al., 2010), and of topic hierarchies (in the context of information retrieval). We focus on using

a referral network as a substrate for Active Learning algorithms, which has not been previously

studied. Also, the FAL algorithm described in (Zhang et al., 2009) uses a variant of ε-greedy

Q-learning similar to one we compared favorably against in the current work.

There exists a wide body of literature relaxing several assumptions of classical Active Learn-

ing geared towards practical considerations. Instead of requesting one label at a time, batch mode

learning is considered in (Brinker, 2003; Xu et al., 2007; Guo and Schuurmans, 2008; Hoi et al.,

2006a,b; Yang and Carbonell, 2013). Similar to our setting with experts with varying skill levels,

noisy oracles have been studied in (Snow et al., 2008; Donmez et al., 2009b, 2010b; Sheng and

Ling, 2006). In our work, we assume labeling cost as a constant. However, in real-world, it

could be variable depending on factors like difficulty level of tasks, scarcity of relevant experts,

required time or resource to solve etc. Cost-sensitive Active Learning has received attention

in (Kapoor et al., 2007; Vijayanarasimhan and Grauman, 2011; King et al., 2004). Similar to

our work where queries belong to multiple topics, multi-task learning is considered in (Reichart

et al., 2008; Qi et al., 2008). However, none of these previous works considered communication

between multiple noisy oracles in the form of referrals.

In crowdsourcing, communication between experts and non-experts has been studied – in a

system dubbed Skierarchy (Nallapati et al., 2012) domain experts break down a complex task

into simpler micro-tasks and actively supervise the non-expert crowd. However, in our approach,

there is no such simplifying assumption: it is highly unlikely that one expert Pareto dominates

other experts in a professional network across all topics. Instead, referral is bi-directional, and

the main focus is on learning appropriate referral choices in a distributed manner, rather than by

specific boss agents. Although not connected through referral networks, multiple annotators are

often used to disambiguate noisy labels. In presence of annotator disagreements, Learning from

crowd, proposed in (Raykar et al., 2010; Whitehill et al., 2009), presents a probabilistic model to

model the labeling process and a subsequent Expectation-Maximum (EM) step is used to obtain

maximum likelihood estimates (MLEs) of unobserved variables. The trade-off between expert

labelers and noisy labelers, a related problem, has been studied in (Sheng et al., 2008; Snow

et al., 2008; Sorokin and Forsyth, 2008). In the MAB literature, communications between the
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players to find a close-to-optimal arm has been considered in (Hillel et al., 2013). In this setting, k

players communicate among themselves in a load-balanced manner to find an ε-optimal arm and

the primary challenge is to find a close-to-optimal arm in a large set of arms through distributed

search. In our work, the challenge is different: modeling real world, individual experts are

connected only with a handful of colleagues; however, learning being distributed, each expert

has to learn her own referral policies for individual topics for which early learning advantage is

crucial.

2.2 Robustness Analysis

Our work on expertise drift fits in the broader context of multi-agent learning in non-stationary

setting (Silva et al., 2006; Noda, 2009; Kaisers and Tuyls, 2010; Abdallah and Kaisers, 2016;

Bowling and Veloso, 2001). In the context of Proactive Learning, prior work on Interval Esti-

mation Learning (the basic building block of DIEL) to track time-varying accuracy (Donmez

et al., 2010b) used a particle filtering approach. Whereas this approach is elegant, it is infeasible

in our case because it requires a large number of samples even for a single central learner, and

the distributed nature of learning by each member of the referral network only exacerbates the

problem. In the MAB literature, time-varying reward distributions were introduced in (Whittle,

1988) and subsequently had several contributions addressing the challenge (see, e.g., (Weber

and Weiss, 1990; Bertsimas and Niño-Mora, 2000; Liu and Zhao, 2010; Yu and Mannor, 2009;

Hartland et al., 2006)). Dynamic Thompson Sampling (Gupta et al., 2011), an extension

of Thompson Sampling (Thompson, 1933), were suggested for these restless bandits. Our

work is different from previous restless bandits literature by introducing richer algorithms and

operating in scale, with multiple agents learning several threads of referral policies for each

topic. Brownian perturbation (Gupta et al., 2011) for modeling random drift is insufficient for

capturing human expertise change, as it often improves with time and hence requires consider-

ing positively biased drifts. We also present a less common approach in tackling drift includ-

ing concept drift (Tsymbal, 2004; Gama et al., 2014) where the most popular approaches are

window-based (Gupta et al., 2011; Garivier and Moulines, 2008). A related problem is that of

fault detection-isolation Lai (2001). However, the goals are different; as opposed to detecting

the change and classifying the post-change distribution within a finite set of possibilities, we are

primarily concerned with addressing the drift by incurring minimum possible regret. Our set-

ting is also more complex with several possible change points; a similar problem is addressed

in Akakpo (2008).

For expertise drift, we proposed a hybrid combination of Optimistic Thompson Sampling,
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Pessimistic Thompson Sampling and DIEL which adaptively switches between dif-

ferent algorithms striking a balance between exploration and exploitation. Several lines of work

in the past have studied adaptive strategies in algorithm design. In the Active Learning literature,

one such example is (Donmez et al., 2007) where performance improvement over static strate-

gies is brought by adaptively updating strategy selection parameters. In a completely different

domain, (Wei et al., 2008) presents a hybrid stochastic local search SAT solver that switches

between two heuristics to strike a balance between search diversification and intensification.

Capacity constraints have been largely ignored in Active Learning literature other than Proac-

tive Learning (Donmez and Carbonell, 2008) where unavailability of oracles is considered in the

form of oracle reluctance which is subsequently used to estimate the reluctance for labeling

nearby points. In the MAB literature, Sleeping bandits has been considered in (Kleinberg et al.,

2010; Blum and Mansour, 2007; Freund et al., 1997). Apart from the contrast in the scale we

are operating, our work is also different in a sense that capacity constraints are influenced by

expertise; highly-skilled experts are more likely to get busier hence unavailable for future re-

quests. We see some direct applications in load-balancing referral network through dispersion

games, specifically anti-coordination games (Grenager et al., 2002). However, the two research

questions are different:

Learning-to-refer: given a network of experts, how to learn effective referrals?

Anti-coordination game: given a set of experts, how to create a referral network by connecting

experts with minimal skill overlap such that the overall network performance is improved?

Similar to capacity constraints, evolving networks also received little attention from previ-

ous work in Active Learning. Mortal bandits, MAB equivalent of evolving networks, has been

studied in (Chakrabarti et al., 2009). In (Chakrabarti et al., 2009), two different approaches

to model mortality were considered of which the timed death corresponds to our setting. Our

work is different in seeing a connection between the cold-start problem and evolving networks

and proposing proactive skill posting, an augmented learning setting, and proactive versions of

algorithms that tackle evolving networks with greater agility.

2.3 Proactive Skill Posting

Cold-start problem, the primary challenge proactive skill posting aims to address, is a well-

studied problem in recommender systems (the new user problem) (Park et al., 2006; Leung et al.,

2008; Maneeroj and Takasu, 2009; Chen and He, 2009; Loh et al., 2009; Weng et al., 2008; Kim

et al., 2010). Whenever a new user joins the system, it is difficult to come up with meaningful

recommendations since their is little prior information (e.g., movies rated by the user) about the
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user. Analogous to that, when a new expert joins a referral network, she does not know whom to

refer and her colleagues are equally uninformed about her expertise areas. Proactive skill posting

is also related to the bandit literature with side-information (Langford et al., 2008; Shivaswamy

and Joachims, 2012) in the sense that algorithms do not start from scratch. However, a key dif-

ference is that, instead of from observed trials (Shivaswamy and Joachims, 2012) or shape of the

reward distribution (Bouneffouf and Feraud, 2016), the side-information in our case is obtained

through advertisement of skills by the experts themselves (who may in fact willfully misreport

to attract more business). This ties our work broadly to the vast literature in adversarial machine

learning (Huang et al., 2011; Papernot et al., 2016; Newsome et al., 2006) and truthful mechanism

design (Babaioff et al., 2009; Biswas et al., 2015; Tran-Thanh et al., 2012b,a). Among a large

body of literature in truthful mechanism design (Babaioff et al., 2009; Biswas et al., 2015; Tran-

Thanh et al., 2012b,a) we highlight a few key differences with the budgeted multi-armed bandit

mechanism motivated by crowdsourcing platforms presented in (Biswas et al., 2015). First, our

setting is distributed; while learning-to-refer can be interpreted as a multi-armed bandit problem

where each arm is a referral choice, we are in fact dealing with several such parallel multi-armed

bandit problems. Also, in our setting, experts have varying topical expertise which increases the

scale of the problem, as each expert needs to estimate the expertise of her colleagues for each of

the topics. In contrast, (Biswas et al., 2015) considered homogenous tasks. Reflecting real-world

scenarios where experts may not know their skills on all topics and also may not have the time

budget to inform their colleagues about their skills on individual topics, proactive-DIEL deals

with partially available priors, i.e., experts are restricted by an advertisement budget and do not

bid for all the topics (a factor (Biswas et al., 2015) did not need to consider because of homo-

geneous tasks). Finally, much of our focus is on a thorough empirical performance evaluation

on both synthetic data and real-world data where certain distributional assumptions on expertise

and skill estimates may or may nor hold.

2.4 Other Related Work

In part of this work, we used SATenstein (KhudaBukhsh et al., 2009), a highly parameterized

Stochastic Local Search (SLS) SAT solver. SATenstein has a design space of 2.01×1014 can-

didate solvers which includes most of the high-performance SLS SAT solvers proposed in the

literature. By using an automatic algorithm configurator, SATenstein can be configured on

specific SAT distributions. We used 100 such solvers obtained from the experiments in (Khud-

aBukhsh et al., 2016d) that allow us to evaluate referral performance on a real task of SAT

solving. The data set can be utilized as meaningful benchmarks for evaluating MAB algorithms
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in general where there is a serious lack of empirical evaluations beyond synthetic data set barring

few (Chapelle and Li, 2011; Kandasamy et al., 2017)

Our work was also influenced by several other areas, such as Agents and Simulation, (e.g.,

(Axelrod, 2003)), Networks and Emerging Properties,( e.g., (Manavalan and Singh, 2012; Yu,

2002)), Data Mining in Social Networks, (e.g., (Jensen and Neville, 2002)), Expertise and Ex-

pertise Finding, (e.g., (McDonald and Ackerman, 2000; Pushpa et al., 2010; Lin et al., 2017)),

Computational Trust (e.g., (Sabater and Sierra, 2005; Sherchan et al., 2013)) of which a small

selection is presented in the Bibliography.
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Chapter 3

Referral Setting with Uninformative Priors

In this chapter, we focus on the uninformative prior setting, the most challenging setting in which

experts start with no prior information on the expertise of their colleagues. Our primary research

goal here is to identify a set of referral learning algorithms that can address the learning-to-refer

challenge and evaluate them both on synthetic and non-synthetic data.

We first present the three research questions we are interested in finding answers to and ex-

plain why these questions are important and their associated challenges. Next, we present the

preliminaries to understand referral mechanism, basic notations, and our assumptions that guided

our data set generation process. In subsequent chapters, we relaxed several of our initial assump-

tions that led to re-evaluation (e.g., algorithms’ handling capacity constraints) or re-designing

of algorithms (e.g., proactive algorithms to handle evolving networks) and at times, both new

algorithms and data set for performance evaluation (e.g., data set and algorithms for expertise

drift). Whenever, we present an assumption that is relaxed in a later stage, we provide pointer

to the relevant section where it is relaxed. However, instead of designing novel algorithms, in

this chapter, we mainly compared several existing re-inforcement learning algorithms to assess

their suitability in learning referrals (exceptions include a variant of ε-Greedy and ε-DIEL).

We provide a short description of these referral-learning algorithms along with relevant litera-

ture. Following the algorithm description, we present our experimental setup and analyze the

experimental results both on synthetic and non-synthetic data. We conclude with revisiting our

research questions and presenting our main takeaways from this chapter.

3.1 Research Questions and Challenges

In this chapter, we focus on the following research questions:

How to learn effective referral choices? A key challenge in learning in a distributed setting
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without a central “boss” agent is local visibility of rewards, i.e., each expert has to learn its own

referral choices for each topic and her observations are not visible to others so there is no scope

of learning from others’ mistakes or benefiting from others’ findings. For practical viability, it is

crucial that the learning algorithm shows rapid improvement in the early phase of learning.

Do close-to-optimal local decisions translate into close-to-optimal global decisions? We are

primarily interested in the overall performance of the network. In a distributed setting, each ex-

pert learns her own referral policies, and depending on her colleagues’ expertise and size of the

subnetwork would require varying number of samples to approach optimal policies. How do sev-

eral experts learning in parallel affect the overall network performance, and if close-to-optimal

decisions translate into close-to-optima global decisions are important questions to consider.

How should we evaluate performance beyond synthetic data? Finding data sets suitable

for the referral setting is a nontrivial challenge. For this, we would require a large number of

experts with differential domain expertise. The flexibility to consider both binary and bounded

continuous reward will be a plus.

3.2 Preliminaries

Referral network: Represented by a graph (V,E) of size k in which each vertex vi corresponds

to an expert ei (1 ≤ k) and each bidirectional edge 〈vi, vj〉 indicates a referral link which implies

ei and ej can refer problem instances to each other.

Subnetwork: The subnetwork of an expert ei is the set of experts linked to ei by a referral link.

Scenario: Set of m instances (q1, . . . , qm) belonging to n topics (t1, . . . , tn) that are to be ad-

dressed by the k experts (e1, . . . , ek).

Expertise: Expertise of an expert/question pair 〈ei, qj〉 is the probability with with ei can solve

qj .

Referral mechanism: For a query budget Q = 2, consists of the following steps.

1. A user issues qj ( initial query ) to a randomly chosen expert ei (initial expert)

2. Initial expert ei examines the instance and solves it if possible. This depends on the exper-

tise of ei wrt. qj .

3. If not, a referral query is issued by ei to a referred expert, ej , within her subnetwork.

Learning-to-refer involves improving the estimate of who is most likely to solve the prob-

lem.

4. If the referred expert succeeds, she communicates the solution to the initial expert, who in

turn, communicates it to the user.
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Note that, if the query budget >2, the recipient of a referral can herself re-refer to another

expert.

3.3 Expertise and Network Assumptions

We now present our assumptions on the network, expertise and rewards (observability, range

etc.). Our assumptions are primarily geared towards constructing our synthetic data set. Since

many of these assumptions may not hold in the wild, in addition to our experiments on synthetic

data, we test our referral algorithms’ performance on a data set of SAT solvers (see, Chapter 3.7)

and also used standard random graph generators (see, Chapter 4.4).

3.3.1 Expertise and Expert Assumptions

Topic-wise distributional assumption: We take the expertise distribution for a given topic t to

be a mixture of two truncated Gaussians (with parameters λ = {wti , µti, σti} i = 1, 2.). One of

them (N (µt2, σ
t
2)) has a greater mean (µt2 > µt1), smaller variance (σt2 < σt1) and lower mixture

weight (wt2 << wt1). Intuitively, this represents the expertise of experts with specific training for

the given topic, contrasted with the lower-level expertise of the layman population.

Instance-wise distributional assumption: We model the expertise of a given expert on in-

stances under a topic by a truncated Gaussian distribution with small variance. i.e.,

Expertise(ei, qj) ∼ N (µtopicp,ei , σtopicp,ei),

∀qj ∈ topicp,∀p, i : σtopicp,ei ≤ 0.2.

The distributional assumptions on expertise are relaxed in Chapter 3.7. In our experiments

with well-known high-performance SAT solvers as experts, and finding a satisfiable model for a

SAT instance is the task, our expertise assumptions no longer hold.

In our experiments with SAT solvers as experts, verification of a solution is rather straight-

forward; one can easily verify if a model satisfies a propositional satisfiability instance. However,

in several real-world problem domains, verifiability of solutions could be difficult, and in those

cases, we consider the initial expert takes on faith that if the referred expert solved the problem,

she probably solved it correctly. For instance, if a general practitioner referred a patient to a

cardiologist and the latter diagnosed a heart valve malfunction leading to corrective surgery,

there is no way for that general practitioner to know for sure if that was the optimal diagnosis,

even if the patient was cured (e.g., a less invasive process resulting from a slightly different

diagnosis such as a fluttering valve might have been “optimal”). Judging answer optimality is

an interesting research challenge, but that is not the focus of this thesis. Consensus opinion by
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multiple experts would apply as a surrogate to ground truth if budget allowed, but in most real

settings budget does not allow. Hence, in all our experiments, we make a simplifying assumption

that an expert “knows” when she is able/unable to solve a task and communicates the solution or

the failure truthfully. We additionally assume that an expert’s referral decision to a colleague is

independent of the referral behavior of the colleague, i.e., there is no quid pro quo or any other

form of side-deals influencing the referral decision.

3.3.2 Network Assumptions

The probability that a referral link exists between expert ei and ej is a function of how similar

the two experts are, which we modeled as

P (ReferralLink(vi, vj)) = τ + c Sim(ei, ej). We made this modeling choice because of the gen-

eral observation that people sharing common expertise areas are more likely to know each other.

For instance, two Machine Learning researchers are more likely to know each other as opposed to

a Data Scientist and a Cyber-security expert. Within the Machine Learning community, two re-

searchers working on Active Learning will be even more likely to know each other than an Active

Learning researcher and a Reinforcement Learning researcher. As a similarity metric we used

cosine similarity of topic-means. The parameter τ captures any extraneous reason two experts

can be connected, e.g., same geolocation, common acquaintances, etc. Our network assumptions

are relaxed in Chapter 4.4 in which we consider networks constructed using well-known random

graph generators.

3.3.3 Reward Assumptions

From the point of view of a single expert, for a given topic, learning referral policy maps to the

classic multi-armed bandit setting where each arm corresponds to a referral choice. Similar to

the unknown reward distributions of the arms, the expertise of the colleagues is not known in

this case. In order to learn an effective referral strategy, whenever an expert refers a task to her

colleague, and depending on the outcome of the task, she assigns a reward to the referred col-

league. The computational aspect (what type of information regarding the sequence of rewards is

necessary?, how to score an expert depending on her past performance?) of the referral decision

is described in our following section, here we outline the main assumptions related to rewards.

All our rewards are
• bounded: All our rewards are bounded within the the range [0,1]. In all our experi-

ments involving synthetic data, we considered binary rewards, with a failed and successful

task receiving a reward of 0 and 1, respectively. For our experiments with SAT solvers,
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we considered both binary and continuous reward. The policy to assign binary reward is

straight-forward: a solved instance receives a reward of 1 and a timed-out instance receives

a reward of 0. Continuous reward is modeled by time-to-solution.

• i.i.d: The reward for a given expert on a specific instance belonging to a topic is indepen-

dent of any reward observed from any other experts and any reward or sequence of rewards

belonging to that topic or any other topic by the same expert.

• locally assigned and locally visible: Rewards are both locally assigned and locally visible.

For example, reward(ei, t, ej), a function of initial expert ei, referred expert ej and topic t,

is assigned by ei and visible to ei only. In case of multi-hop referrals, suppose an instance

is first received by expertA who redirects it toB, B redirects it to C who eventually solves

it. C will inform B the solution who in turn will inform the solution to A. So A will learn

B solved the instance and will assign a reward 1 to B.

We further assume that an expert can accurately identify the topic of a query (relaxed in Chap-

ter 4.4), the distributional parameters of expertise do not change over time (relaxed in Chapter

3.7), and that experts have no capacity constraints (relaxed in Chapter 4.1), and experts do not

have any bias to specific colleagues.

3.4 Referral-Learning Algorithms

As we already mentioned, from the point of view of a single expert, learning appropriate referral

choices for a given topic is an action selection problem (multi-armed bandit problems belong

to this broader class of action selection problems). We first fix topic to T and expert to e and

describe each algorithm in that context. Let q1, . . . , qN be the firstN referred queries belonging to

topic T issued by expert e to any of her K colleagues denoted by e1, . . . , eK . For each colleague

ei, e maintains a reward vector ri,ni
where ri,ni

= (ri,1, . . . , ri,ni
), i.e., the sequence of rewards

observed from expert ei on issued ni referred queries. Understandably, N =
∑K

i=1 ni. m(ei)

and s(ei) denote the sample mean and sample standard deviation of these reward vectors. For all

our experiments involving synthetic data, we consider binary reward. For example, if an expert

solved the first two referred queries and fails in the next two, the reward vector will look like (1,

1, 0, 0). Some of the algorithms we would discuss require initializing these reward vectors; we

will explicitly mention whenever such initialization is required. For each expert ei, e maintains

Sei and Fei where Sei denotes the number of observed successes (reward = 1) and Fei denotes

the number of observed failures (reward = 0). Clearly, ∀(Sei + Fei) > 0, m(ei) =
Sei

Sei+Fei
.

The learning to refer challenge is the following question: given a new referred query, q,
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Category Algorithm Parameters
IEL DIEL (KhudaBukhsh et al., 2016a) None
Greedy DMT (KhudaBukhsh et al., 2016c) None
Greedy ε-Greedy (Auer et al., 2002) c
Greedy ε-Greedy1 (KhudaBukhsh et al., 2017b) α
UCB UCB1 (Agrawal, 1995) None
UCB UCB2 (Auer et al., 2002) α
UCB UCBNormal (Lai and Robbins, 1985) None
UCB UCBV (Audibert et al., 2007) θ
Q-learning Q-learning (Watkins and Dayan, 1992) α, γ, ε
Q-learning DQ-learning (van Hasselt, 2010) α, γ, ε
Thompson Sampling Thompson Sampling (Thompson, 1933) None
Thompson Sampling Optimistic Thompson Sampling (May et al., 2012) None

Table 3.1: Referral algorithms

with past referred queries q1, . . . , qN and reward vectors r1,n1 , . . . , rK,nK
, which expert should

e refer to? The referral learning algorithms we used for performance comparison are listed in

Table 3.1 along with the list of configurable parameters and the references to the versions used

in this thesis. At a high level, each of the referral algorithms presented in Table 3.1 computes

a score for every expert ei (denoted by score(ei)) and selects the expert with the highest score

breaking any remaining ties randomly. Like any other action selection problem, learning-to-

refer also poses the classic exploration-exploitation trade-off: on one hand, we would like to

refer to an expert who has performed well in the past (exploitation), while ensuring enough

exploration to make sure we are not missing out on stronger experts. For exploration purpose,

some of these algorithms (e.g., ε-Greedy) contain a diversification component which allows it

to randomly select an expert with some small probability. Some algorithms use reward variance

(e.g., DIEL) or sampling frequency (e.g., UCB1) for similar purpose. In what follows we give a

short description of the learning algorithms along with the pseudo-code.

3.4.1 DIEL

First proposed in (Kaelbling, 1993), Interval Estimation Learning (IEL) has been extensively

used in stochastic optimization (Donmez et al., 2009a) and action selection problems (Wiering

and Schmidhuber, 1998; Berry and Fristedt, 1985). Action selection using Distributed Interval

Estimation Learning (DIEL) works in the following way (Donmez et al., 2009a; KhudaBukhsh

et al., 2016a). First, for each expert ei, UI(ei), the upper confidence interval for the mean reward
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is estimated by

UI(ei) = m(ei) +
s(ei)√
ni

(3.1)

Next, DIEL selects the expert with the highest upper confidence interval. Every reward vector

is initialized with two rewards of 0 and 1, allowing us to initialize the mean and variance, i.e.,

∀i, ni = 2 and ri,ni
= (0, 1).

The intuition behind selecting an expert with a high expected reward (m(ei)) and/or a large

amount of uncertainty in the reward (s(ei)) is the following. A large variance implies greater

uncertainty, indicating that the expert has not been sampled with sufficient frequency to obtain

reliable estimates. Selecting such an expert is an exploration step which will increase the con-

fidence of e in her estimate. Also, such steps have the potential of identifying a highly skilled

expert. Selecting an expert with a high m(e) amounts to exploitation. Initially, the choices made

by e tend to be explorative since the intervals are large due to the uncertainty of the reward esti-

mates. With an increased number of samples, the intervals shrink and the referrals become more

exploitative.

Algorithm 1: DIEL(e, T )
Initialization: ∀i, ni ← 2, ri,ni

← (0, 1)
Loop: Select expert ei who maximizes

score(ei) = m(ei) + s(ei)√
ni

Observe reward r
Update ri,ni

with r, ni ← ni + 1

3.4.2 DMT

Algorithm 2: DMT(e, T )
Initialization: ∀i, ni ← 2, ri,ni

← (0, 1)
Loop: Select expert ei who maximizes

score(ei) = m(ei)
Observe reward r
Update ri,ni

with r, ni ← ni + 1

Unlike DIEL, DMT only considers the mean observed reward and always greedily picks the

expert with the highest observed reward.
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It is trivial to prove that DMT can easily get stuck with a sub-optimal choice and thus is not an

efficient choice for a referral algorithm. To simplify the proof, we consider continuous reward

distributions with fixed range (0,1). Suppose e only has two colleagues e1 and e2. e1 has a

constant reward distribution of 0.25 and e2 has a Bernoulli distribution with p = 0.75. With

probability 0.25 (if the first observed reward from e2 is 0), e can remain forever stuck with e1.

3.4.3 ε-Greedy

DMT, being purely greedy, can easily get stuck with a sub-optimal referral choice. ε-Greedy

performs a diversification step with a probability ε. i.e., with probability ε, it randomly chooses

one of the connected experts for referral. We consider two different variants of ε-Greedy1.

ε-Greedy1 ε-Greedy1 differs from ε-Greedy only in its way of setting the diversification

probability parameter (set to α∗K
N

whereK is the subnetwork size, i.e., the total number of referral

choices).

Algorithm 3: ε-Greedy(e, T )
Initialization: ∀i, ni ← 2, ri,ni

← (0, 1)
Loop: Define ebest = arg max m(ei)

With probability ε, refer to randomly chosen expert ei
With probability 1− ε, refer to ebest, i← best
Observe reward r
Update ri,ni

with r, ni ← ni + 1

3.4.4 UCB1

UCB1 belongs to the well-studied upper confidence bound family of algorithms first proposed

in (Lai and Robbins, 1985). The proposed algorithm was subsequently simplified in (Agrawal,

1995; Auer et al., 2002) and we use the version presented in (Auer et al., 2002). Over the last few

decades, UCB class of algorithms has received substantial attention in the bandit community and

several well-known variants exist (see, e.g., KL-UCB (Garivier and Cappé, 2011), MOSS (Audib-

ert and Bubeck, 2010), UCBV (Audibert et al., 2007), and Bayes-UCB Kaufmann et al. (2012)).

Similar to DIEL and the Greedy variants, the exploitation component of UCB1 is also

mean-based. However, the exploitation function based on sampling frequency is different. UCB1

selects the expert with highest m(ei)+
√

2lnN
nei

. This implies among two experts with equal mean

reward, UCB1 will favor the least sampled one.
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Algorithm 4: UCB1(e, T )
Initialization: Refer to each expert once
For the n-th query select expert ei who maximizes

score(ei) = m(ei) +
√

2lnN
ni

Observe reward r
Update: update ri,ni

with r, ni ← ni + 1

3.4.5 UCB2

UCB2 executes in an episodic fashion. Once an expert is selected, for an entire episode, all

referrals go to her. For each expert ei, it first initializes epochei to 0 where epochei denotes the

number of episodes ei has been chosen for referral. In the beginning, each expert is referred

once. Once the last chosen expert ej has been referred for episodeej times, the new expert is

selected by maximizing m(ei) +
√

(1+α).ln(eNτ(epochei ))

2τ(epochei )
where

τ(epochei) = (1 + α)epochei (3.2)

episodeej = τ(epochej + 1)− τ(epochej) (3.3)

and α is a configurable parameter.

Algorithm 5: UCB2(e, T )
Parameters: α
Initialization: ∀i, epochei ← 0, refer to each expert once
Loop:

1. Select expert ei maximizing score(ei) = m(ei) +
√

(1+α).ln(eNτ(rei ))

2τ(rei )

2. Refer to expert ei for episodeei times
Observe reward r
Update ri,ni

with r, ni ← ni + 1
3. Update epochei ← epochei + 1

3.4.6 UCB-normal

UCB-normal performs any action that has been executed less than dlogNe. If no such action

exists, the action with highest m(a) +
√

16. sq(a)−na.m(a)2

na−1
. ln(N−1)

na
is chosen (sq(a) is the sum of

squared reward obtained from action a).
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Algorithm 6: UCBNormal(e, T )
Initialization: Select an expert that has been executed less than dlogNe
For the n-th query select expert ei who maximizes

score(ei) = m(a) +
√

16. sq(a)−na.m(a)2

na−1
. ln(N−1)

na

Observe reward r
Update: update ri,ni

with r, ni ← ni + 1

3.4.7 UCBV

Similar to DIEL, UCBV also uses variance to compute expected reward. However, it uses a dif-

ferent exploration function, logN
na

. UCBV selects the action with highest m(a) + s(a).
√

2θlog(N)
na

+
3θlog(N)

na
. (Audibert et al., 2007) reported a value of 1.2 for the parameter θ to guarantee logarith-

mic convergence.

Algorithm 7: UCBV(e, T )
Initialization: Refer to each expert once
For the n-th query select expert ei who maximizes

score(ei) = m(ei) + s(ei).
√

2θlog(N)
ni

+ 3θlog(N)
ni

Observe reward r
Update: update ri,ni

with r, ni ← ni + 1

3.4.8 Q-Learning

Q-Learning (Watkins and Dayan, 1992) is a well-known model-free reinforcement learn-

ing algorithm used in a wide variety of applications. Under some mild conditions (Jaakkola

et al., 1994; Tsitsiklis, 1994; Littman and Szepesvári, 1996), it is proven that the policy Q con-

verges to the optimal policy Q∗ in the limit. Q-Learning is an important internal compo-

nent to several gradient-based learning algorithms specifically designed for multi-agent inter-

actions (Abdallah and Lesser, 2008; Bowling, 2005; Zhang and Lesser, 2010). Q-Learning

has several well-known variants (see, e.g., Speedy Q-Learning (Azar et al., 2011), Double

Q-Learning (van Hasselt, 2010), Frequency Adjusted Q-Learning (Kaisers and Tuyls,

2010), Repeated Update Q-Learning (Abdallah and Kaisers, 2016) etc.) of which, we

study the performance of Double Q-Learning for learning referrals.

At each step, Q-learning select an action (in our case, a referral decision) and observes the

state-transition (in our case, no state transition happens since we have a single state) and reward.

After each step, the Q function is updated using the following equation.
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Qt+1(s, a)← Qt(s, a) + α(r + γ max Qt(s
′, a′)−Qt(s, a)) (3.4)

Q-learning has two parameters: γ and α. γ is called discount factor which controls the

relative importance of future rewards. α is called the learning rate which controls the speed

of learning. The two most common exploration strategies for Q-learning is ε-Greedy

exploration and Boltzmann exploration (Sutton and Barto, 1998). As shown in Algorithm 8, the

variant of Q-Learning we used is ε-Greedy for which we have an additional parameter, ε

that balances the exploration-exploitation tradeoff.

Algorithm 8: Q-Learning(e, T )
Initialization: Initialize Q arbitrarily, observe s
Loop:

1. With probability 1 - ε, select expert ei who maximizes the Q function
2. With probability ε, randomly choose an expert
3. Update Q function using equation 3.4

3.4.9 DQ-Learning

Double Q-Learning, or DQ-learning, maintains two Q functions: QA and QB. After each

action and observing the subsequent reward and state (in our case, we have just one constant

state), one of the two Q functions is chosen for update. Maintaining two such Q functions has the

following benefit. Unlike traditional Q-Learning that often overestimates the maximum expected

reward, the double estimator approach sometimes underestimates the maximum expected reward.

In practice, DQ-Learning tends to converge faster than Q-Learning (for further details,

see (van Hasselt, 2010)). For the Q-Learning component in DQ-learning, we considered

ε-Greedy-Q-Learning.

3.4.10 Thompson Sampling

Thompson Sampling was first proposed in the 1930’s (Thompson, 1933) and the finite-time

regret bound remained unsolved for decades (Agrawal and Goyal, 2012) until recent results on

its competitiveness with algorithms with provable regret bounds renewed interest (Chapelle and

Li, 2011; Graepel et al., 2010).

In all our experiments, we consider Thompson Sampling (TS) with Beta priors (other

types of priors include Jeffreys prior in Korda et al. (2013), Gaussian prior in Agrawal and Goyal
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Algorithm 9: DQ-Learning(e, T )
Initialization: Initialize QA, QB arbitrarily, observe s
Loop:

1. Refer to expert based on QA(s, .) and QB(s, .), observe r, s′

2. Choose (e.g., random) either UPDATE(A) or UPDATE(B)
3.
if UPDATE(A) then

Define a∗ = arg maxa QA(s′, a)
QA(s, a)← QA(s, a) + α(s, a)(r + γ QB(s′, a∗)−QA(s, a))

else
Define b∗ = arg maxa QB(s′, a)
QB(s, a)← QB(s, a) + α(s, a)(r + γ QA(s′, a∗)−QB(s, a))

end
4. s← s′

(2013)). At each step, for each expert ei, TS first samples θi from Beta(Sei + 1, Fei + 1) where

Sei and Fei are the number of observed successes (reward = 1) and failures (reward = 0). Next,

TS selects the expert with highest θi.

When the number of observations is 0, θi is sampled from Beta(1, 1), which is U(0, 1); this

makes all colleagues equally likely to receive referral. As the number of observations increases,

the distribution for a given expert becomes more and more centered around the empirical mean

favoring experts with better historical performance.

Algorithm 10: TS(e, T )
Initialization: ∀i, Sei ← 0, Fei ← 0
For the n-th query select expert ei who maximizes
score(ei) = Beta(1 + Sei , 1 + Fei)
Observe reward r
Update:
if r == 1 then

Sei ← Sei + 1
else

Fei ← Fei + 1
end
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3.4.11 Optimistic Thompson Sampling

Optimistic TS (May et al., 2012) is very similar to TS. The only restriction is θi is never

allowed to be less than the mean observed rewardm(ei); θi is set tom(ei) whenever it is less than

m(ei) (in the boundary condition when number of observed samples is zero, m(ei) is considered

to be zero). The reason this sampling technique is called optimistic is because we always believe

that the true mean is at least as high as the sampled mean. Note that, each time we refer to ei
where θi > m(ei), we are essentially performing an exploration step.

For continuous rewards, we modify both Optimistic TS and TS the same way as pre-

sented in Agrawal and Goyal (2012). We consider the observed reward as the parameter for a

Bernoulli trial. The outcome of the trial is then considered as the reward.

Algorithm 11: Optimistic TS(e, T )
Initialization: ∀i, Sei ← 0, Fei ← 0
For the n-th query select expert ei who maximizes
score(ei) = max(m(ei), Beta(1 + Sei , 1 + Fei))
Observe reward r
Update:
if r == 1 then

Sei ← Sei + 1
else

Fei ← Fei + 1
end

3.4.12 Expertise-Blind

The baseline for our experiments is an Expertise-Blind algorithm where the initial expert

randomly chooses a connected expert for referral. Essentially, the baseline allows us to determine

how much learning appropriate referral adds to the performance.

3.4.13 Upper Bound

Our upper bound is the performance of a network where every expert has access to an oracle that

knows the true topic-mean (i.e., mean(Expertise(ei, q) : q ∈ topicp) ∀i, p) of every expert-topic

pair.
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Parameter Description Distribution
τ P (ReferralLink(vi, vj )) Uniform(0.01, 0.1)
c = τ + c Sim(ei, ej). Uniform(0.1,0.2)
µ1 Truncated mixture of two Uniform(0,b)
µ2 Gaussians for topics Uniform(b,1)

b ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
σ1 Uniform(0.2,0.4)
σ2 Uniform(0.05,0.15)
w2 N (0.03, 0.01), w2 ≥ 0

Table 3.2: Parameters for synthetic data set

3.5 Experimental Setup

Referral-learning algorithms: We compared the performance of twelve referral-learning algo-

rithms (listed in Table 3.1), a topical upper bound, and a random (expertise-blind) baseline. Each

parameterized referral algorithm was tuned on a separate training set constructed using the same

parameter distribution described in Table 3.2 (KhudaBukhsh et al., 2016c). The ε-Greedy algo-

rithm, as presented in (Auer et al., 2002), requires prior knowledge about the reward distribution

in order to set the value of the hyper-parameter d. However, we found that estimating d from the

observations created sub-par performance. Setting instead ε to α∗K
N

(where K is the subnetwork

size and N is the number of total observations) gave rise to a good performance when appropri-

ately configured. We followed a similar procedure to set ε for ε-Greedy Q-learning,

Algorithm configuration: We first generated a small training data set (10 scenarios) using the

same distributional parameters used for our test set. Then, for each algorithm, we ran 100 ran-

dom instantiations of the algorithm on the training data set and selected the configuration that

performed best on this set. For computational tractability, we chose a smaller training data set. It

is unlikely that our configured algorithms suffered from overfitting because all our configured al-

gorithms achieved superior performance on the test set than corresponding performance reported

in (KhudaBukhsh et al., 2016c).

Synthetic data set: Our test set for performance evaluation (KhudaBukhsh et al., 2016c,a).

consisted of 1000 scenarios, each with 100 experts, 10 topics and a referral network. For our

per-instance query budget, Q, we chose the values 2, 3, and 4, corresponding to single-hop,

two-hop and three-hop referrals, respectively.

Upper bounds and baseline: Our upper bound for single-hop referral (KhudaBukhsh et al.,

2016c) is the performance of a network where every expert has access to an oracle that knows

the true topic-mean (i.e., mean(Expertise(ei, q) : q ∈ topicp) ∀i, p) of every expert-topic pair.
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For two-hop referrals, we use an upper bound based on calculating optimal referral choices

up to depth 2 – say an expert ei has two referral choices, ej and ek, with an expertise of 0.4

and 0.5 respectively, and the maximum expertise under ej and ek’s subnetworks are 0.9 and

0.2 respectively; our upper bound will choose ej over ek because of a higher overall solution

probability. Finally, the baseline is an Expertise-Blind algorithm where the initial expert

randomly chooses a connected expert for referral.

Non-synthetic data set: The 100 SATenstein solvers we used are obtained by configuring

SATenstein2.0 version (described in (KhudaBukhsh et al., 2016d)) on six well-known SAT

distributions. Each of these solvers is configured on one of the six SAT distributions listed in

Table 3.3. We used the test sets of the SAT distributions as our pool of tasks. For selecting an

instance from a distribution, we used random sampling with replacement. Detailed descriptions

of the SAT distributions can be found in (KhudaBukhsh et al., 2009).

Performance Measure: Our performance measure is the overall task accuracy of our multi-

expert system. So if a network receives n tasks of which m tasks are solved (either by the initial

expert or the referred expert), the overall task accuracy is m
n

. For our experiments on synthetic

data set, each algorithm is run on the data set of 1000 referral networks and the average over

such 1000 simulations is reported in our results section. In order to facilitate comparability, for

a given simulation across all algorithms, we chose the same sequence of initial expert and topic

pairs.

Computational environment: We carried out our experiments involving SAT solvers on a clus-

ter of dual-core 2.4 GHz machines with 3 MB cache and 32 GB RAM running Linux 2.6. Ex-

periments on synthetic data were carried out on Matlab R2016 running Windows 10.

3.6 Performance Comparison on Synthetic Data

We conduct the experiments on our synthetic data in two stages. In the first stage, for single-hop

referral, we consider all algorithms presented in Table 3.1. For multi-hop referral, we consider a

subset of high-performance algorithms identified in the single-hop setting experiments.

3.6.1 Single-hop Referral

For single referral, Table 3.4 presents the mean task accuracy across the entire data set at specific

points of the horizon (samples per subnetwork). For a given horizon, the best performance (not

considering the upper-bound oracle) is highlighted in bold. Our results show that except during

the very early stages of the simulation, DIEL dominated all the other referral algorithms with
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Distribution Description Generator Parameters Size
QCP SAT-encoded quasi-group order O ∈ [10, 30]; 1000 instances

completion problems holes H = h ∗O1.55,
(Gomes and Selman, 1997) h ∈ [1.2, 2.2]

SW-GCP SAT-encoded small-world
graph-colouring problems

ring lattice size S ∈ [100, 400]; 1000 instances

(Gent et al., 1999) nearest neighbors connected:
10;
rewiring probability: 2−7;
chromatic numbers: 6

R3SAT uniform-random 3-SAT variable: 600; 250 instances
instances (Simon, 2002) clauses-to-variables ratio: 4.26

HGEN random instances generated variable n ∈ [200, 400] 1000 instances
by HGEN2 (Hirsch, 2002)

FAC SAT-encoded factoring prob-
lems

prime number ∈ [3000, 4000] 1000 instances

(Uchida and Watanabe, 1999)
CBMC SAT-encoded bounded model array size s ∈ [1, 2000]; 302 instances

checking (Clarke et al., 2004), loop unwinding n ∈ 4, 5, 6
preprocessed by SatELite
(Eén and Biere, 2005)

Table 3.3: Six benchmark SAT distributions mapping to topics

a performance approaching the optimal upper bound. A paired t-test reveals that beyond the

crossover point (1000 samples per subnetwork), DIEL is better than all other referral algorithms

with p-value less than 0.0001. Algorithms with provable performance guarantees may catch

up with DIEL given a sufficiently large horizon, but from a practical standpoint, DIEL is an

effective referral algorithm to handle real-world scenarios. We extended a random subset of

200 scenarios up to a horizon of 20,000 samples per subnetwork, at which time none of the top

performing referral-algorithms from each category had caught up with DIEL.

The large performance difference between the upper bounds and the baseline shows that ef-

fective referral mechanisms can make a significant difference. Also, in every category, the best al-

gorithm performed substantially better than the baseline indicating that learning-to-refer

is a tractable challenge even with an uninformative prior. In a more realistic setting, with infor-

mative priors on several expert-topic pairs, fewer samples may be required.

For the remaining results, we retained only the best-performing algorithms in each cate-

gory, as follows: DIEL (IEL category), ε-Greedy1 (Greedy category), UCB1 (UCB category)

and DQ-learning (Q-learning category). For comparison, we included additionally, DMT, a

horizon-free algorithm. For the remainder of the thesis, we denote ε-Greedy1 as ε-Greedy.
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500 1000 1500 2000 3000 4000 5000
Upper Bound 79.47 79.31 79.27 79.42 79.38 79.41 79.47
DIEL 67.73 73.35 75.35 76.33 77.33 77.76 77.96
DMT 70.63 73.06 73.83 74.20 74.54 74.71 74.69
ε-Greedy 55.33 56.63 57.80 58.95 60.57 61.95 62.97
ε-Greedy1 70.22 72.91 73.97 74.48 74.92 75.19 75.32
UCB1 57.78 59.60 60.80 61.61 63.28 64.49 65.49
UCB2 63.71 64.16 64.19 64.21 64.18 64.19 64.28
UCB-normal 54.38 54.47 54.71 54.97 56.43 58.91 61.39
UCBV 54.99 55.92 56.44 56.87 57.83 58.60 59.15
Q-Learning 65.46 69.19 70.98 72.08 73.46 74.27 74.75
DQ-learning 70.23 72.68 73.74 74.37 75.14 75.60 75.91
TS 62.96 66.93 69.38 71.07 73.26 74.56 75.49
Optimistic TS 63.90 67.67 70.05 71.62 73.63 74.86 75.66
Expertise-Blind 54.48 54.46 54.45 54.41 54.48 54.44 54.60

Table 3.4: Performance comparison of referral algorithms.

3.6.2 Multi-hop Referral

In a multi-hop setting, a referred expert can continue referring an instance to another expert as

long as the budget permits (excluding cyclic referrals). Figure 3.2 compares our top-performing

referral algorithms with query budget 3 and 4. In Figure 3.2(a), we compare the performance

with an upper bound that calculates optimal choice to depth 2 (optimal choice to depth 1 but the

same query budget 3 achieved a task accuracy of 93.05%). Understandably, with a higher query

budget, the overall task accuracy of every learning algorithm increases. However, DIEL’s rapid

performance gain in the early phase of learning still enables it to obtain a superior performance.

The practical benefit of DIEL against algorithms with theoretical convergence guarantees is par-

ticularly evident when compared against UCB1. In fact, DIEL with a lower query budget (Q =

3) achieves a better performance than UCB1 with a higher budget (Q = 4).

However, in three-hop setting, we found that Optimistic TS marginally outperformed

DIEL towards the end of the horizon. The exploration component of DIEL dies down quickly,

while Optimistic TS continually explores albeit at an increasingly reduced rate. This con-

tinual exploration enables Optimistic TS to find experts who were themselves weak but

eventually found stronger referral options thus improving their effective strength. To address this

issue, we proposed ε-DIEL, a variant of DIEL with an additional exploration component. Recall

that, DIEL picks an expert with the highest score where the score is defined as m(ei) + s(ei)
nei

.

We break down the score into two factors: m(ei), the mean observed reward, as the exploitation
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Figure 3.1: Performance comparison of ε-DIEL, DIEL and Optimistic TS with query bud-
get Q = 4
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Figure 3.2: Multi-hop referral
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Algorithm 12: ε-DIEL(e, T )
Initialization: ∀i, ni ← 2, ri,ni

← (0, 1)

Loop: Define ebest = arg max m(ei) + s(ei)√
ni

if exploration(ebest) ≤ thresh then
with probability ε, refer to randomly chosen expert ei
with probability 1− ε, refer to ebest, i← best

else
refer to e∗, i← best

end
Observe reward r
Update ri,ni

with r, ni ← ni + 1

factor and s(ei)
nei

, the sample-size adjusted variance term, as the exploration factor. When DIEL

settles down with a referral choice, the exploration factor of the best expert slowly goes down

as the best expert continues to receive referrals because of a high exploitation factor. When

the exploration factor is below a threshold, we introduce an ε-Greedy-like exploration step,

i.e., randomly picking an expert for referral with a small probability ε. As shown in Algo-

rithm 12, ε-DIEL has one parameter, thresh, set to 0.1 in our experiments. Figure 3.1 shows

that with this modification to DIEL, ε-DIEL obtains marginally better steady-state performance

than Optimistic TS while sacrificing some early learning advantage as obtained in DIEL.

Multi-hop referrals introduce non-stationarity in expertise in a sense that a weak expert can

find a strong colleague in a later part of the simulation which effectively changes her exper-

tise. Our results reveal DIEL’s vulnerability to expertise drift; we perform an in-depth analy-

sis of this phenomenon and propose a novel algorithm Hybrid, a combination of Thompson

Sampling variants and DIEL, in Chapter 4.3.

3.7 Evaluation on Referral Network of SAT Solvers

In order to determine the true impact of learning-to-refer, we move beyond synthetic domains,

starting with a network of expert SAT solvers. For a given propositional formula F , the satisfi-

ability problem (SAT) asks if there exists a complete assignment of truth values to the variables

of F under which F evaluates to true (see, e.g., (Biere et al., 2009)). Many of the hard com-

binatorial problems that arise in practical scenarios belong to the complexity class of so-called

NP-complete problems (Cook, 1971; Applegate et al., 2011; Biere et al., 1999; Fraenkel, 1993;

Pop et al., 2002), reduce to SAT, one of the most-studied NP-complete problems. For example,

SAT solves the core problems arising in applications such as planning (Kautz and Selman, 1996,
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Figure 3.3: Expertise estimates of a subset of solvers on background data of two SAT distribu-
tions CBMC (bounded model checking) and QCP (quasi-group completion problems)

1999), scheduling (Crawford and Baker, 1994), graph-coloring (Gelder, 2008), bounded model

checking (Biere et al., 1999), and formal verification (Stephan et al., 1996). Given the efficiency

of modern SAT solvers, many of these otherwise intractable problems are solved at significant

scale, even given the theoretical NP limit.

High-performance Stochastic Local Search (SLS) solvers map to experts and Boolean satis-

fiability (SAT) instances to tasks/queries. This mapping is particularly appealing because SLS

solvers work better or worse (= skills) depending on the SAT distributions (= topics). There

are also large number of SAT-solver experts with varying topical expertise (see, Figure 3.3)

available in the form of SATenstein solvers (KhudaBukhsh et al., 2009) (which map to our

experts). In our experiments, we use 100 SATenstein solvers configured on six well-known

SAT distributions (which map to our topics), which include real applications such as factoring

and model-checking (KhudaBukhsh et al., 2016d). Moreover, verifying if the task is solved cor-

rectly is straightforward: the solver finds a satisfying model of the instance. Finally, we may

measure time-to-solution in order to explore continuous rewards, rather than just binary, i.e.,

whether the SAT instance is solved within the allocated time bound. In real life, many tasks

involve task-responses beyond simple binary states (e.g., what fraction of all constraints an opti-

mization algorithm satisfies, by how far the prediction of a stock value is off, in a scale of 1-10,

how confident the doctor is in diagnosing her patient with stage-two melanoma). Hence, evalu-

ating referral algorithms on a continuous reward setting is important as an effective referral will

maximize not only solution likelihood but also solution quality.

SAT being an NP-complete problem, run times do not have any known closed-formd pa-

rameterized distribution which allows us to evaluate performance in the wild. Because of this,
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the data set can be utilized as meaningful benchmarks for evaluating MAB algorithms in gen-

eral where there is a serious lack of empirical evaluations beyond synthetic data set barring

few (Chapelle and Li, 2011; Kandasamy et al., 2017).

We set the budget C for solving each instance to 1 CPU second, which is the maximum

time in which, on a similar computing architecture, configured high-performance SATenstein

solvers were found to solve a majority of the instances in their expertise area (KhudaBukhsh

et al., 2016d) (This was corroborated in our experiments). The reward is computed as (C - rt)

where rt is the run time (when a solver fails to solve an instance, rt = 1). With C set to 1 in

our experiments, the reward is bounded by [0, 1) with a failed task fetching a reward of 0 and

higher rewards implying faster solutions. So in this setting, through continuous reward, we have

incorporated solution quality (in this case, run time) in our experiments. We also considered

binary rewards in our experiments; for which, we simply assign a reward of 1 when the referred

solver finds a satisfying model and 0 when the referred solver times out.

Figure 3.4 presents the performance comparison of referral-learning algorithms where ex-

perts are SAT solvers and topics are SAT problem distributions on 10 randomly chosen referral

networks. We found that DIEL outperformed all other algorithms, with Optimistic TS,

DMT, DQ-learning, and ε-Greedy1 achieving a performance close to DIEL (even when

we extended the runs to 4000 referrals per subnetwork for ε-Greedy and Optimistic TS,

they had not yet caught up with DIEL). Similar to the results obtained on our synthetic data, we

found that UCB had the slowest rate of improvement in the initial stage of learning. These results

highlight the following. First, with real experts, a well-defined task and very few distributional

assumptions on expertise, we found that learning effective referral choices that improve solution

quality is possible. Second, DIEL’s superiority over other referral-learning algorithms is not just

restricted to synthetic data, nor the consequence of binary rewards.

3.8 Revisting the Research Questions

We now revisit the research questions and present our main takeaways:

How to learn effective referral choices? Since the problem of learning appropriate referrals can

be cast in various ways, our primary goal was not to design new algorithms, we rather focused

on each different paradigm and identify few key algorithms in those settings, thus forming a

diverse pool of existing algorithms. We considered the following categories of algorithms: multi-

armed bandit algorithms (UCB class and Thompson Sampling variants), Q-learning variants,

Interval Estimation Learning (IEL) algorithms and Greedy variants.

We found that several algorithms showed competitive performance with DIEL leading the
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Figure 3.4: Performance comparison on SAT solvers as experts and SAT solving as the task
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pack. In multi-hop setting, Optimistic TS’s performance improves with an increased num-

ber of hops. We also presented a novel algorithm ε-DIEL that performs comparably with

Optimistic TS. However, this result reveals DIEL’s vulnerability to expertise drift, a case

we analysis in Chapter 4.3.

Do close-to-optimal local decisions translate into close-to-optimal global decisions? Yes. In

our distributed setting, each expert were learning referral policies for each topic on its own. Yet,

the performance of DIEL and many other algorithms were close to the oracle Upper Bound.

How should we evaluate performance beyond synthetic data? We considered a suite of high-

performance SAT solvers as experts to overcome this challenge. The SAT solver data set was

useful in evaluating performance both with continuous and binary reward allowing us to test

algorithms on conditions where expertise do not obey any known parameterized form.
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Chapter 4

Robustness to Practical Factors

Several practical factors may impact the performance of a referral network. In this chapter, we

primarily focus on three of them:

• capacity constraints (limits on number of tasks per time period)

• evolving networks (changes in connectivity or agents joining or leaving the referral net-

work) and

• expertise drift (skills improving over time or atrophying through disuse).

From a practical standpoint, assuming that experts can handle an unbounded number of re-

quests within a specific time-window, is unrealistic. Capacity constraints put a restriction on

the number of tasks an expert can solve within a given time period (we consider the number of

tasks the overall network receives as a proxy for time). Beyond the permissible task-threshold,

an expert becomes unavailable for a while till her load situation improves. In evolving networks,

we consider a different type of unavailability of experts. We assume that the network experi-

ences attrition of existing experts and an influx of new experts, and assess the robustness of our

referral-learning algorithms. In expertise drift, the initial stationary assumption on the distribu-

tional parameters of expertise no longer holds modeling experts improving with time or losing

skills because of factors like fatigue, disuse etc.

For capacity constraints and evolving networks, our experiments are limited to performance

assessment of existing high-performance referral-learning algorithms in the static case. For ex-

pertise drift, by far the most challenging robustness criterion, we design new algorithms and

compare the performance with the top-performing algorithm in the stationary expertise setting.

Additionally, we studied networks generated using well-known random graph generators and

effects on learning behavior when topic-identification is noisy.

The remainder of the chapter is organized as follows. We first analyze the performance
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Figure 4.1: Average load on experts, overlaid with expertise. Experts are sorted in the ascending
order on their mean expertise. Average load is computed per 1000 queries.

of referral-learning algorithms in presence of capacity constraints following which, we relax the

static assumption on the network and consider two types of network changes: distributed change,

single-point change. After studying the learning behavior on evolving networks, we present

a detailed analysis of expertise drift. We conclude with reporting some additional robustness

results.

4.1 Capacity Constraints

Capacity constraints on experts are rarely considered in Active Learning (though Proactive

Learning (Donmez and Carbonell, 2008) considers similar aspects). In reality, of course, experts

can handle only a limited number of tasks at any given time, while the better experts may receive

an ever increasing stream of requests. As a first step to analyze this issue, we note that aver-

age expertise and average load was moderately correlated (correlation coefficient 0.69) in our

simulations (see, e.g., Figure 4.1).

Let load(ei,m) denote the number of tasks expert ei received among the last m tasks (initial

or referred) the network received. In a network of k experts, a fair load for every expert is m
k

.

An expert is overloaded if load(ei,m) ≥ c ∗ m
k

, where c (load-factor) is greater than 1. While

we can imagine an overloaded expert charging more money to solve a problem (or delaying

her response, or referring to another expert), in our experiments we assumed that she becomes

completely unavailable until the load situation improves. Figure 4.3 presents the average number

of overloaded experts when DIEL and DMT are used with m set to 1000 queries and c set to
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Figure 4.2: Performance of DIEL, DMT and Optimistic TS for different values of the load-
factor c
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Figure 4.3: Number of overloaded experts per 1000 queries for different values of the load-factor
c

1.5 and 2. We found that both DIEL and DMT had some overloaded experts throughout the

entire period of time with a high number of overloaded experts in the early phase. Algorithms

with greater exploration tend to have fewer overloaded experts in the early learning phase. As

expected, the number of overloaded experts also increased considerably with a tighter value of c.

Even with a tighter value of c of 1.5, we find that the performance of the referral algo-

rithms degrades gracefully, and sometimes even paradoxically improves, a phenomenon due to

the forced exploration resulting from load balancing. For example, in Figure 4.2, while DIEL

exhibits a graceful performance degradation with increased load factor, the load-balanced ver-

sion of DMT with a load factor of 2 does slightly better than DMT without any capacity constraint.

That we observed this property with all the referral algorithms leads us to conjecture that load

balancing is facilitated by the distributed nature of the learning setting.

4.2 Evolving Networks

In practice, referral networks are not static; they evolve over time with new links being

forged, experts dropping out, and new ones joining. We focused primarily on addition/deletion

of new/old experts to the network. We considered this both in the form of a single point change

(i.e. a catastrophic event, with 20% of the experts in the network replaced at iteration 100, where

an iteration consists of 1000 initial queries), and a distributed change (modelling more closely a

real-world gradual change: 5% of the network changes every 50 iterations). Note that, Our main

reason to opt for this choice was to obtain a clearer visualization of the effect on network per-
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Figure 4.4: Performance of referral-learning algorithms with distributed 5% network change
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Figure 4.5: Performance of referral-learning algorithms with single point 20% network change
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formance; we also ran experiments where the network changes are distributed across time-steps

and found qualitatively similar performance.

Figure 4.4(a) compares the performance of DIEL on a static network with that on a dynamic

network with distributed change. Our results show that DIEL coped fairly well with a distributed

change, and in spite of multiple changes in the network at a regular interval, the final DIEL

performance on a dynamic network (task accuracy 76.91%) is slightly worse than DIEL on a

static network, but still better than any other referral learning algorithm presented in Table 3.4.

Hence, the performance of DIEL on a dynamic network with distributed change is better than

the performance of any other referral-learning we studied even on a static network. In addition,

we ran experiments where no experts leave or join, but new referral links get created. Then

too, the performance of the referral learning algorithms proved robust, exhibiting qualitatively

similar characteristics. We found none of the algorithms had any problem with adjusting to a

single point network change. Figure 4.5 shows the result for DIEL, UCB1 and Optmistic

Thompson Sampling. Other referral algorithms showed qualitatively similar behavior.

The relative performance of the referral-learning algorithms raise few interesting observa-

tions. The performance dip in Optimistic TS after a network change occurs is much lesser

than the performance dip in DIEL or UCB1. In fact, for the first few distributed changes,

Optimistic TS showed no loss of performance. However, when the amount of change (cu-

mulative or one time) is large, DIEL showed better recovery than Optimistic TS. In compar-

ison with their static-network counterpart, surprisingly, UCB1 showed an improvement. Recall

that, the exploration component of UCB1 is sampling-frequency based, favoring least sampled

experts more. Hence, when a new set of experts arrive at a later stage of simulation, the newer

experts are likely to get sampled more often. This effectively, temporarily restricts the search-

space as UCB1 focuses more on the newer experts while favoring only those old experts with

strong historical performance. This could be a possible explanation for the modest performance

gain observed in UCB1.

At a high-level, capacity constraints and evolving networks are somewhat inter-related; in

both cases, mainly one underlying previous assumption changes: availability of experts. When

we consider capacity constraints, our assumption that an expert can handle an unbounded number

of requests in a given amount of time no longer holds; the expert becomes unavailable whenever

the number of requested tasks crosses some certain threshold. Similarly, evolving networks

could be viewed as experts being available for a certain time-period then becoming completely

unavailable. Intuitively, unavailability of a stronger expert will hurt the overall performance more

than that of a weaker expert. However, one subtle difference is that stronger experts are more

likely to get busier, hence relative expertise is a factor in capacity constraint but not in evolving
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networks. If we look at the load-restricted behavior of Optimistic TS, we will find that

similar to the dynamic-network behavior, Optimistic TS showed a strong resilience to less

stricter load-conditions (load-factor 2), but performed substantially worse when load-factor was

1.5.

Evolving networks is revisited in Chapter 5 where we introduce proactive skill posting. In

Chapter 5, we examined DIEL’s tolerance to more severe extent of distributed change (20% of

the network changes every 50 iterations). We found that proactive skill posting was particularly

useful when network evolves at such high rate, and the performance of proactive-DIEL was

substantially better than that of DIEL.

4.3 Expertise Drift

The partial information (Burtini et al., 2015) or the information obstacle (Babaioff et al.,

2014) present in multi-armed bandit (MAB) settings is a key challenge in referral networks too.

When an expert refers a task to a colleague, there is no way to know how other colleagues would

have performed on the same task. Moreover, local visibility of rewards, and the distributed na-

ture of learning, i.e., each expert is independently estimating topical expertise of her colleagues,

contributes to the challenges of learning-to-refer. For practical viability, early-learning-phase

performance gain is crucial and over a large network, as we cannot afford an unbounded number

of samples to estimate topical expertise. Understandably, learning-to-refer becomes even more

challenging with non-stationary expertise since weak experts who were discarded for future con-

sideration on any given topic, could gain expertise over time, becoming real contenders who

should not be ignored in optimizing referral decisions. Hence, devising algorithms to deal with

time-varying expertise would be a meaningful research challenge.

In what follows, we first present the research questions we considered. Next, we describe our

modeling choices for expertise drift. In addition to Brownian bidirectional drift, the typical drift

model in the literature, we also consider drift with positive bias, where agents mostly improve

with practice. Finally, we present our experimental setup and results.

4.3.1 Research Questions

How to detect a drifting expert? All referral algorithms we have presented so far, will be able

to detect an initially good expert whose performance deteriorates. However, if an expert initially

exhibits low performance and then improves, designing referral algorithms that quickly detect
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such expertise shifts could be a challenging task, given that previously dismissed low performers

would have a low probability of being sampled by the current algorithms.

How to adapt to the drift, and quickly?
Realizing that our top-choice is no longer performing to her previous potential is important.

However, from the network’s performance point of view, an even more important aspect is to

find another strong expert.

Can hybrid algorithms be useful in presence of expertise drift? Algorithms exhibit a varying

range of approaches to strike up a balance between exploration and exploitation. Combining

multiple algorithms could be proven beneficial in tackling expertise drift.

4.3.2 Modeling Drift

In previous work, (KhudaBukhsh et al., 2016c,a,b, 2017b), the expertise of an expert ei on topicp
was modeled as a truncated Gaussian distribution with small variance:

expertise(ei, qj ∈ topicp) ∼ N (µtopicp,ei , σtopicp,ei),∀p, i : σtopicp,ei ≤ 0.2.

Here, we introduce the notion of drift in the following way. In a time-varying expertise setting,

expertise of an expert ei on topicp is expressed as

expertise(ei, qj ∈ topicp) ∼ N (µtopicp,ei,epochk , σtopicp,ei),

µtopicp,ei,epochk+1
= µtopicp,ei,epochk +N (µdrift, σdrift)

We assume discrete changes at epoch boundaries, and for a given epoch, we assume the distri-

butional parameters on expertise do not change. When µdrift is 0, the unbiased drift is similar

to the Brownian perturbation previously considered in (Gupta et al., 2011). Since expertise is a

probability, it must remain within [0, 1]. We assume that once expertise reaches the boundary, it

remains there until a drift moves it out of the boundary.

The expertise of people often improve over time by acquiring a new skill, explicit learning

on how to improve a skill, or just practice through solving more problems. We consider this case

in our positive biased drifts (with µdrift > 0), where the overall expertise of the experts in the

network improves on certain topics over time.

4.3.3 Referral Algorithms

Similar to our previous algorithm descriptions, we fix the expert to e and topic to T . Recall

that, for a given expert e and topic T , Sei and Fei denote the total number of observed successes

and failures, respectively. Also, m(ei) and s(ei) denote the sample mean and sample standard

deviation of the corresponding reward vector.
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Pessimistic Thompson Sampling (Pessimistic TS)

Pessimistic TS behaves the opposite way to Optimistic TS: θi is never allowed to be

greater than the mean observed rewardm(ei) and is set tom(ei) whenever it is greater thanm(ei).

Note that, each time we select an expert ei where θi < m(ei), we are essentially performing an

exploitation step. Also, notice that without any initialization of the mean, if any action fails at the

first execution, it will never be chosen again. To circumvent this deficiency, the mean of every

action is initialized the same way as DIEL, enabling the possibility of future selection.

Algorithm 13: Pessimistic TS(e, T )
Initialization: ∀i, Sei ← 0, Fei ← 0
For the n-th query select expert ei who maximizes
score(ei) = min(m(ei), Beta(1 + Sei , 1 + Fei))
Observe reward r
Update:
if r == 1 then

Sei ← Sei + 1
else

Fei ← Fei + 1
end

Pessimistic TS-DIEL

This action selection strategy is a new combination of DIEL and Pessimistic TS. As de-

scribed in Algorithm 14,this action selection strategy is a novel combination of DIEL and Pessimistic

TS. Essentially, the strategy replaces mean observed reward with adjusted θi of Pessimistic

TS. Notice that, in presence of expertise drift, having a conservative approach towards estimat-

ing the mean could prove beneficial because the empirical (historical) mean may overestimate

the true-mean (post drift).

Hybrid

Our Hybrid algorithm is a combination of Optimistic TS and Pessimistic TS-DIEL.

Initially, Hybrid starts as Optimistic TSwhich favors early exploration. If the performance-

improvement gradient is low, it switches to favoring exploitation through Pessimistic TS-DIEL.

The switching criterion is conditioned on topic and described in Algorithm 15. perfwi
is the
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Algorithm 14: Pessimistic TS-DIEL(e, T )
Initialization: ∀i, Sei ← 0, Fei ← 0
For the n-th query select expert ei who maximizes
score(ei) = min(m(ei), Beta(1 + Sei , 1 + Fei))
Observe reward r
Update:
if r == 1 then

Sei ← Sei + 1
else

Fei ← Fei + 1
end

mean reward obtained in referral-window wi (set to 100 referrals). If the performance improve-

ment w.r.t. the best so far performance perfbest, is below a threshold, either Optimistic TS

has reached saturation, or the performance suffered because of drift and Hybrid switches to

Pessimistic TS-DIEL for subsequent exploitation. In our experiments, we set the value of

threshold to 0 while noting that the performance wasn’t highly sensitive to the choice of value as

we observed indistinguishable performance difference with small values in [+0.05,−0.05].

Algorithm 15: Hybrid(e, T )
execute Optimistic TS
perfbest ← perfw1

switchFlag← 0
for i = 2, 3, . . . do

if switchF lag == 0 then
execute Optimistic TS
perf∆ ← perfwi

− perfbest
if perf∆ < threshold then

switchF lag ← 1
end
if perf∆ > 0 then

perfbest ← perfwi

end
else

execute Pessimistic TS-DIEL
end

end
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4.3.4 Experimental Setup

Baselines and upper bounds: DIEL, the previously-known state-of-the-art referral learning

algorithm on non-drift setting, is our baseline. Additionally, we included three Thompson

Sampling variants and two topical upper bounds for performance comparison. Thompson

Sampling variants and the DIEL version we used (KhudaBukhsh et al., 2016a, 2017b) are pa-

rameter free. The threshold parameter of Hybrid is set to 0. We considered two upper bounds:

Drift-Blind and Drift-Aware. The Drift-Aware upper bound is the performance

of a network where every expert has access to an oracle that knows the true topic-mean (i.e.,

mean(Expertise(ei, q) : q ∈ topicp) ∀i, p) of every expert-topic pair. The Drift-Blind up-

per bound is the performance of a network where every expert has access to an oracle that only

knows the true topic-mean of every expert-topic pair at the beginning of the simulation but is

agnostic of any subsequent drift.

Data set: Our test set for performance evaluation is the same data set used in (KhudaBukhsh

et al., 2016b), which is a random subset of 200 scenarios also used in (KhudaBukhsh et al.,

2016c,a, 2017b). Each scenario consists of a network of 100 experts and 10 topics. In our simu-

lation, we start with the same parameter values describing topical expertise of each expert. As the

simulation progresses, the expertise drifts according to the drift parameter values are described

in Table 4.1. For modeling expertise drift, we believe a slow, gradual change in expertise is more

realistic than abrupt changes. Hence, we considered the distribution for expertise as piece-wise

stationary and selected small values for µdrift and σdrift. Recall that in a time-varying expertise

setting, expertise of an expert ei on topicp is modeled as

µtopicp,ei,epochk+1
= µtopicp,ei,epochk +N (µdrift, σdrift). For each expert, the epoch boundaries are

chosen uniformly at random. The total number of epochs for a given topic is set to 40 (with 10

topics, this essentially means, the total number of time the expertise of an expert changes is 400).

Drift µdrift σdrift
weak, unbiased 0 0.03
strong, unbiased 0 0.06
weak, small positive bias 0.005 0.03
strong, small positive bias 0.005 0.06
strong, large positive bias 0.05 0.06

Table 4.1: Drift parameters

Performance Measure: We use the same performance measure, overall task accuracy of our

multi-expert system, as in previous work in referral networks. In order to facilitate comparability,

for a given simulation across all algorithms, we chose the same sequence of initial expert and
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topic pairs; for each expert in a network, the epoch length and expertise shift for each given topic

are identical across different referral algorithm runs. Q, the per-instance query budget, is set to

2.

Computational Environment: Experiments were carried out on Matlab R2016 running Win-

dows 10.

4.3.5 Experimental Results

Figure 4.6 and 4.7 compare the performance of referral learning algorithms in the presence of

strong drift (weaker drift shows qualitatively similar results). Our results demonstrate the fol-

lowing points:

First, the Drift-Aware upper bound outperforms the Drift-Blind by a considerable

margin, as expected. In fact, apart from Pessimistic TS, all algorithms eventually outper-

formed the Drift-Blind upper bound. This underscores the importance of tracking drift in

expertise estimation and continual learning, since starting with a perfect information on the top-

ical mean of every expert-topic pair was not enough to overcome expertise-drift tracking, even if

imperfect.
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Figure 4.8: Components of Hybrid
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(a) Unbiased, strong drift

(b) Unbiased, strong drift, steady state

Figure 4.6: Performance comparison of referral learning algorithms
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(a) Small positive bias, strong drift

(b) Small positive bias, strong drift, steady state

Figure 4.7: Performance comparison of referral learning algorithms
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Figure 4.9: Switching behavior of Hybrid

Next, we evaluate the relative expertise-tracking performance of algorithms in the literature.

The vertical line at 5000 samples per subnetwork marks the horizon considered in previously

reported results. Earlier results demonstrated DIEL outperformed several algorithms including

UCB variants, Q-Learning variants (KhudaBukhsh et al., 2017b, 2016c) in the stationary ex-

pertise setting. In our new results, we find that even in presence of drift, DIEL still outperforms

the TS variants when the number of observed samples is small, once again highlighting the early

performance gain that made DIEL suitable for multi-hop referral learning and proactive skill

posting. However, with a larger number of samples under the expertise-drift condition, we find

that both TS algorithms eventually outperform DIEL, thus presenting better long-term steady-

state performance, and superior tracking of drifting experts.

Next, we focus on Pessimistic TS, a TS variant never considered in the literature be-

fore. As expected, Pessimistic TS performs poorly than the other two TS variants indicat-

ing that it is not a viable standalone action selection strategy. However, combining DIEL and

an effective switching after sufficient exploration proved to be most resilient to time-varying ex-

pertise. This result shows that combining components from different action selection strategies

could result into high-performance algorithms.

Finally, we focus on Hybrid, our primary proposed algorithm. As shown in Figure 4.8,

Hybrid outperformed both its component algorithms by combining the benefit obtained through

early exploration of Optimistic TS and subsequent exploitation through Pessimistic

TS-DIEL. The effective switching criterion ensured sufficient exploration performed before the

switch and less exploration later to continue to track expertise drift. As shown in Figure ??,

Hybrid outperforms DIEL, TS and Optimistic TS, the three algorithms from the litera-

ture, among which DIEL was the top performer in the stationary expertise setting. The small

performance gap between Hybrid and Drift-Aware upper bound indicates that any other
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referral learning algorithm will have at most little advantage.

Note that each expert decides independently when to switch from Optimistic TS to

Pessimistic TS-DIEL for each topic. With 10 topics and 100 experts in the network,

this effectively means at the beginning, 1000 threads of Optimistic TS are running in paral-

lel. We were curious to see when the strategy switch occurred in aggregate. Figure 4.9 presents

the switching behavior of Hybrid in presence of strong, biased drift. Since the switch only

happens if Optimistic TS stops improving significantly, the gradual shift indicates that for

different topic-expert pair, that strategy shift arrives at different operating points depending on

the composition of the subnetwork around each expert, the expertise of the reachable experts and

corresponding drift.
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Figure 4.10: Performance comparison with unbiased weak drift

Our results with weak expertise drifts are qualitatively similar. Figure 4.10 compares the

performance of Optimistic TS, DIEL and Hybrid with weak, unbiased drift and shows

that the relative orderings found in previous results are preserved (DIEL and Optimistic TS

have indistinguishable steady-state performance).

Finally, we present our result with large positive bias, and strong drift in Figure 4.11. The

relative ordering of previous performance is preserved with both DIEL and Optimistic TS

outperforming the Drift-blind upper bound. However, in this case, we found that the drift-

tracking of Hybrid is near-perfect as shown in steady-state close-up in Figure 4.11(b), where

Hybrid is indistinguishable from the drift-aware oracle.

4.3.6 Revisiting the Research Questions

We now take a look at the research questions and present our main takeaways.
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(a) Large positive bias, large drift

(b) Steady-state performance closeup: zooming in to 4.11(a) upper
right portion

Figure 4.11: Performance comparison of referral learning algorithms with large positive bias,
large drift
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How to detect a drifting expert? We found that a combination of Optimistic TS and

Pessimistic TS-DIEL performed the best in detecting drifting experts.

How to adapt to the drift, and quickly?
From Hybrid’s success, we conclude that a combined strategy of early exploration and subse-

quent conservative exploitation is a good adaptive strategy. A performance gradient dependent

switching point helped Hybrid to find a suitable transition point.

Can hybrid algorithms be useful in presence of expertise drift?
Yes. Hybrid, a novel combination of Optimistic TS, Pessimistic TS and DIEL,

were found to be the most resilient against expertise drift. In fact, in fact we propose a new and

structured direction in designing mixed-strategy algorithms in our future work section.

4.4 Additional Robustness Experiments

In this section, we describe some additional experiments we conducted considering noisy topic

identification, larger networks, and well-known graph generators.

Noisy Topic Identification

We initially assumed that all experts can always accurately identify the topic of a task. However,

for many real tasks identifying the topic could be difficult and prone to error. For instance, in

medical diagnosis, similar-looking symptoms may lead to vastly different diseases. In our next

set of experiments, we relax the accurate task-topic identification assumption and found that even

with a topic misclassification rate of 10%, all algorithms performed substantially better than the

expertise-blind baseline. In Figure 4.12, we show results for DIEL, DMT and Optimistic

TS; the results for other algorithms are qualitatively similar. Note that, here we assumed that

in case of a misclassification, all other topics are equally likely which may not be the case on a

practical setting where certain topics can get confused with some specific topics more often than

the other.

Network Size and Distribution:

In Chapter 3, we have shown that our referral-learning algorithms perform well even when

expertise do not obey any known parameterized distribution. Through an extensive series of

experiments, both considering continuous and binary rewards, we have demonstrated a strong

performance on a referral network of SAT solvers. In our next set of experiments, we strive to
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Figure 4.12: Performance of DIEL, DMT and Optimistic TS with topic misclassification
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500 1000 1500 2000 3000 4000 5000
Upper-Bound[SW] 79.48 78.21 78.13 78.81 78.73 78.32 79.75
DIEL[SW] 68.63 73.10 75.10 76.57 76.42 77.11 77.23
DQ[SW] 70.60 72.59 73.59 73.99 74.57 75.09 75.69
OTS[SW] 64.34 68.24 70.21 71.50 73.61 74.54 75.09
Expertise-Blind[SW] 54.08 53.93 54.47 54.78 54.64 54.50 54.31
Upper-Bound[POW] 82.48 82.23 82.51 82.55 82.33 81.93 82.35
DIEL[POW] 65.41 72.80 76.77 77.86 79.55 80.28 80.14
DQ[POW] 70.99 73.51 74.91 75.61 76.89 76.96 77.68
OTS[POW] 63.21 66.61 69.02 71.33 73.59 75.31 76.06
Expertise-Blind[POW] 54.84 54.31 54.88 53.78 54.23 54.78 54.89
Upper-Bound[PREF] 82.10 82.36 82.21 82.29 82.37 82.52 82.42
DIEL[PREF] 64.20 73.20 75.75 77.74 79.48 80.33 80.56
DQ[PREF] 71.06 73.79 75.09 75.66 76.86 77.60 78.19
OTS[PREF] 62.82 66.52 69.09 71.32 73.79 75.02 76.67
Expertise-Blind[PREF] 54.96 54.36 54.08 54.00 54.65 53.85 54.17

Table 4.2: Performance comparison of referral algorithms

test the robustness to network topologies while keeping the expertise assumptions unchanged

(e.g., topical expertise belongs to mixture of Gaussians).

Although we had already shown a measure of robustness to different network topologies,

we investigated a few additional typical network types, while holding the expertise assump-

tions constant: constructing our referral network by means of well-known random graph gener-

ators (Watts and Strogatz, 1998; Barabási and Albert, 1999; Holme and Kim, 2002), we found

that there was no overall qualitative performance change. We denote the data sets as PREF

(preferential graphs), POW (generated with power law distribution) and SW (small world graphs

known to model collaboration networks). We focus on the top three algorithms in our single-

hop referral setting (see, Table 3.4): DIEL, DQ and Optimistic TS. We also include the

Expertise-Blind and Upper-Bound baselines to compare and contrast the learning per-

formance.

Table 4.2 reports the performance of our referral-learning algorithms on referral networks

constructed by well-known random graph generators at different points in the horizon. For a

given network distribution and a specific point in the horizon, the best performance (excluding the

Upper Bound) is highlighted in bold. In all three network distributions, DIEL outperformed

Optimistic TS and DQ highlighting DIEL’s robustness to network topologies. Addition-

ally, we found that all three referral-learning algorithms performed substantially better than the

Expertise-Blind baseline and the results were consistent with our previous experiments.
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We also ran experiments on a data set of referral networks of 1000 experts with similar

subnetwork size. Since our learning is distributed, with each expert learning its own referral

policies, we found that our algorithms scaled linearly with the number of the experts and there

was no significant change in the results.
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Chapter 5

Proactive Skill Posting

In all our experiments so far, we assumed an uninformative prior on the expertise of colleagues.

We have identified a set of algorithms suitable for the learning to refer challenge even in presence

of capacity constraints, evolving networks or expertise drift. However, experts starting with no

information whatsoever about her colleagues may not correspond to a real-world setting. In

real life, we often see that experts clearly mention which type of tasks they are particularly

good at and also often forge links to their colleagues via social networks. Such information can

particularly help in the early phase of learning referrals. Gradually, with further observations,

colleagues may re-estimate their beliefs of expertise levels based on actual performance. In this

chapter, we introduce proactive skill posting, an augmented learning setting with a one time

local-network advertisement of expertise-by-topic by each expert in the network. In real life,

such advertisement will have a budget; it is infeasible for every expert to inform every colleague

an exhaustive list of their topical expertise. Also, it is unlikely that an expert will have close-to-

accurate estimates of her skills on her weaker topics. Hence, our proactive skill posting assumes

advertisement of a subset of strong skills. However, even in one’s true expertise area, estimating

self-skill could be noisy (see, e.g., MacKay et al. (2014)). In this chapter, we present proactive

versions of referral-learning algorithms that take advantage of advertised noisy priors and address

the cold-start problem.

There are two aspects to the cold-start problems in learning distributed referral networks. The

first is when a new expert joins the referral network, other experts may not know that person’s

skill set and therefore are not in a good position to refer any problem(s) his or her way. The

second is the dual problem of that new expert knowing few, if any, skills of the established

expert, and therefore not knowing to whom he or she may refer. We propose to address both the

inward and outward cold start problems via proactive skill posting. However, the success in the

extended learning setting depends on a truthful mechanism to elicit the true skills of the experts
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in the network since the experts, as selfish agents, try to maximize the number of tasks they

receive to maximize fees. Also, as already mentioned, well-meaning experts may overestimate

(or underestimate) their skills. So exploiting the advertised prior would require a mechanism

to both elicit true expertise information and at the same time, being tolerant to noisy self-skill

estimates.

The rest of the chapter is organized as follows. We first present the research questions and

their associated challenges and benefits. Next, we present the preliminaries specific to our aug-

mented learning setting after which, we explore the impact of prior availabilities in two algo-

rithms, DIEL and DMT, with mean-based exploitation. Following the preliminary study, we

describe the two key components: effective initialization to incorporate advertised priors and

a reward-penalty mechanism to discourage strategic lying, of the proactive versions of DIEL,

Q-Learning, and ε-Greedy. We summarize our empirical findings and conclude with revis-

iting the research questions.

5.1 Research Questions

In this chapter, we are primarily concerned with the following research questions:

Does access to (noisy) priors on their colleagues’ expertise improve an expert’s referral per-
formance? The key challenge is initializing the algorithms with the noisy priors in a way such

that the search for an effective referral choice becomes biased towards stronger experts while

ensuring the weaker ones also get enough exploration.

Does access to (noisy) priors on a subset of topics improve an expert’s referral perfor-
mance? It is unlikely that all experts will have accurate or close-to-accurate estimates on their

own skills across all topics. Also, it is infeasible for experts to inform about every skill to ev-

ery connected expert. A more realistic scenario is an expert advertises some of her top skills to

her colleagues. The key is to use the available information present in the explicit bids to set an

upper-bound on the implicit bids.

How to design proactive skill posting algorithms that discourage strategic lying to attract
more business? The challenge of using partially available prior is two-fold. On one hand we

would strive to design algorithms robust to noise in self-skill estimates. On the other hand, we

would like to prevent experts getting more business through strategic lying, i.e., claiming they

are stronger than they actually are.

How extensible are the proactive skill posting techniques? Since different algorithms put

different emphasis on exploration and exploitation, the same initialization and reward-penalty

mechanism may not work for all algorithms.
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5.2 Preliminaries

Advertising unit: a tuple 〈ei, ej, tk, µtk〉, where ei is the target expert, ej is the advertising

expert, tk is the topic and µtk is ej’s (advertised) topical expertise. Similar to rewards in our

uninformative prior setting, an advertising unit is also locally visible, i.e., only the target expert

gets to see the advertised prior for a given unit.

Advertising budget: In practice, experts have limited time to socialize with different colleagues

and get to know each other’s experience. We incorporate this notion through the notion of budget

and assume each expert is allocated a budget of B advertising units, where B is twice the size

of that expert’s subnetwork. Effectively means that each expert reports her top two skills to

everyone in her subnetwork.

Advertising protocol: a one-time advertisement that happens right at the beginning of the simu-

lation or when an expert joins the network. The advertising expert ej reports to each target expert

ei in her subnetwork the two tuples 〈ei, ej, tbest, µtbest〉 and 〈ei, ej, tsecondBest, µtsecondBest
〉, i.e., the

top two topics in terms of the advertising expert’s topic means.

Explicit bid: A topic that is advertised in the above advertising protocol.

Implicit bid: A topic that is not advertised, for which an upper bound can be assumed.

5.3 Impact of Informative Prior

To set the stage for proactive skill posting, where experts have a noisy estimate of a subset of

their skills which they advertise to their colleagues, we first examine to which extent informative

priors on the means can be incorporated into referral algorithms. For this, we considered two

algorthims: DIEL and DMT, in which empirical mean is the exploitation component. In Fig-

ure 5.1, we contrast the performance of DIEL and DMT in an uninformed prior setting versus an

informed prior setting where experts have access to a noisy oracle.

Specifically, our experimental design is the following. Every expert has access to a noisy

oracle than can estimate the true topic-mean of every other expert-topic pair within an error

bound, i.e. |µei,tk − µ̂ei,tk | ≤ δ where µ̂ei,tk is the estimated topic-mean of expert ei on topic

tk. Unlike our previous initialization scheme, instead of setting all reward vectors (0,1), for all

experts, reward(ei, tk, ej) are initialized with two rewards of µ̂ei,tk . The initialization of two

rewards is essentially done to set the initial variance of DIEL to zero. The performance of DMT
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Figure 5.1: DIEL and DMT with informative prior

would remain unchanged even if we initialized with a single reward. We chose the same for DMT

primarily for consistency.

In figure 5.1, we see that even when δ is as high as 0.2, the performance of both DIEL and

DMT substantially improved; and the cold-start problem was duly addressed as the early-learning

phase advantage was considerably large. An interesting side-observation is that, an uninformed

DIEL still managed to outperform an informed DMT. This result highlights again that DIEL’s

variance-based exploration component creates a strong impact in learning.

5.4 Proactive Skill Posting

In this section, we outline the design modifications on three algorithms, DIEL, ε-Greedy, and

Q-Learning, that led to their corresponding proactive versions. Any proactive algorithm dif-

fers from its non-proactive counterpart in two areas: initialization and reward mechanism. The

goal of initialization is to make the algorithms’ search more biased towards stronger experts. The

goal of reward-penalty mechanism is to ensure no expert can get more business by overstating

their priors.

5.4.1 Initialization

proactive-DIEL

Rather than DIEL sets reward(ei, tk, ej) for each i, j and k with a pair (0, 1) in order to initial-

ize mean and variance, proactive-DIEL initializes reward(ei, tk, ej) for each advertisement unit

〈ei, ej, tk, µtk〉 with two rewards of µtk (explicit bid).
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To initialize topics for which no advertisement units are available (implicit bid), we initialize

the rewards as if the expert’s skill was the same as on her second best topic, that is, with two

rewards of µtsecondBest
, effectively being an upper bound on the actual value.

proactive-ε-Greedy

Recall that, similar to DIEL, ε-Greedywas also initialized with a reward-pair of (0, 1). Proactive-

ε-Greedy is initialized the same as proactive-DIEL; with two rewards of µtk for the explicit bids

and µtsecondBest
acting as an upper-bound for the implicit bids.

proactive-Q-Learning

Proactive-Q-Learning uses the same initialization and a similar technique to bound unknown

priors with reported second-best skills as proactive-DIEL and proactive-ε-Greedy. Instead

of randomly initializing the Q-Function as in Q-Learning, the Q-function for each action is

initialized with its advertised mean or corresponding µtsecondBest
in absence of such advertisement

unit.

5.4.2 Reward Update Function

Instead of just observing the reward r, and appending it to the corresponding reward vector and

update necessary data structures (e.g., as in Thompson Sampling, maintaining the number of

observed successes and failures for a given expert-topic pair), in proactive skill posting setting,

the reward update function plays a dual role. The first role is same as in the uninformed prior

setting, keeping track of the historical performance of colleagues. The second role is non-trivial;

penalizing experts for misstating their priors.

We have explored two different approaches to penalize misreporting experts. The first ap-

proach is simpler (KhudaBukhsh et al., 2016a), penalizing experts when they fail to solve an

instance. The second approach estimates distrust (KhudaBukhsh et al., 2017a), and penalizes

regardless of success and failure.

In our results section, we compare and contrast these two mechanisms on four different as-

pects: steady-state performance gain, tolerance to noisy self-skill estimates, incentive compati-

bility and extensibility.
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5.4.3 Penalty on Failure

We call the first scheme as Penalty on Failure. Using this approach, we obtained two proactive

algorithms: proactive-DIEL and proactive-ε-Greedy.

When a referred expert ej succeeds in solving a task on topic tk, update in proactive-DIEL’s

update function, like DIEL’s, assigns an additional reward of 1 to reward(ei, tk, ej). When ej
fails, however, instead of always appending a 0 to reward(ei, tk, ej), proactive-DIEL, in the

presence of an advertisement unit 〈ei, ej, tk, µtk〉, appends a (negative) penalty P with probability

µtk . This way, over-reporting of skill leads to more frequent incurrence of the penalty. In the

absence of an advertisement unit (i.e., for implicit bids), a penalty P is still appended, but with

a probability equal to the sample mean of ej observed by ei on topic tk. In our experiments, we

set P to -0.35.
Algorithm 16: Penalty on Failure

if referredExpert succeeds then
penaltyProbability← 0

else
if topic t is explicitBid then

penaltyProbability← µadvertised

else
penaltyProbability← µ̂observed

end
end

Proactive-ε-Greedy was adapted essentially the same way as proactive-DIEL, the only mi-

nor difference being that a failed task does not receive a penalty if it was a diversification step.

5.4.4 Penalty on Distrust

We denote this approach as Penalty on Distrust. We obtained three proactive algorithms using

this approach: proactive-DIELt, proactive-ε-Greedyt and proactive-Q-Learningt1.

In this approach, our penalty incorporates a factor we may call distrust, as it estimates a like-

lihood the expert is lying, given our current observations:

penalty = C2 distrust, where

distrust = distrustFactor1 + distrustFactor2;

distrustFactor1 = |µtbest − µ̂tbest| ζ(ntbest) and,

distrustFactor2 = |µtseconBest
− µ̂tsecondBest

| ζ(ntsecondBest
)

1The subscript t stands for trust.

70



where ζ(nt) = nt

nt+C1
, a factor intended to gradually ramp up to 1 towards steady state, where

nt is the number of observations for topic t. Basically, distrustFactor1 and distrustFactor2 es-

timate how much the advertised skill posting is off from the estimated mean, for the best skill

and second-best skill respectively (i.e., the explicit bids). C1 and C2 are the two configurable

parameters of this mechanism. Intuitively, larger the value of C2, greater is the discouragement

for strategic lying; larger the value of C1, the slower grows the distrust. In all our experiments,

C1 was set to 50. C2 was set to 1, 2 and 3 for proactive-DIELt, proactive-ε-Greedyt, and

proactive-Q-Learningt, respectively.

The distrust-based penalty mechanism differs from the previous approach in that all tasks

receive a penalty regardless of whether the referred expert solves it or not. Second, the two

mechanisms penalize the extent of misreporting in different ways, as the previous method fails

to penalize underbidding. We can show a simple two-expert subnetwork to illustrate how under-

bidding could be used to attract more business in the earlier scheme. Consider two experts, e1

and e2, have identical expertise (1 - ε, ε ≤ 0.5) across all tasks. e1 reports truthfully while e1

underbids and advertises (1 - 2ε). For a penalty of r (r > 0), the expected mean reward for e1

will be (1 - ε) - ε (1 - ε) r. Due to underbidding, e2 will have an unfair advantage over e1 as her

expected mean reward will be (1 - ε) - ε (1 - 2ε) r, larger than e1.

We now provide proof sketches demonstrating Bayesian-Nash incentive compatibility in the

limit for our distrust-based mechanism, Penalty on Distrust.

Theorem 1 Under the assumption that all actions are visited infinitely often, in the limit, strate-

gic lying is not beneficial in proactive-Q-Learningt.

We give a proof sketch by showing that a lying expert will have a non-zero penalty in the

limit.

lim
n→∞

µ̂tbest = µtbest (5.1)

lim
n→∞

µ̂tsecondBest
= µtsecondBest

(5.2)

lim
n→∞

ζ(n) = 1 (5.3)

Hence, for a truthful expert both distrust and penalty approach zero in the limit. However,

for a lying expert at least one of the estimates (distrustFactor1 or distrustFactor2) is off by

a positive constant c. Hence, in the limit, distrust ≥ c and penalty ≥ C2c, therefore a truthful

expert will always receive more reward than if she lies and since Q-Learning considers a
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Reward update function Algorithm Parameters
Penalty on Failure proactive-DIEL (KhudaBukhsh et al., 2016a) P
Penalty on Failure proactive-ε-Greedy (KhudaBukhsh et al., 2016b) α, P
Penalty on Distrust proactive-DIELt (KhudaBukhsh et al., 2017a) C1, C2

Penalty on Distrust proactive-ε-Greedyt (KhudaBukhsh et al., 2017a) α, C1, C2

Penalty on Distrust proactive-Q-Learningt (KhudaBukhsh et al., 2017a) α, γ, ε, C1, C2

Table 5.1: Proactive referral algorithms

discounted sum of rewards, eventually, a truthful expert will have a larger Q-value than if she

lies. Ergo, strategic lying is not beneficial when all other experts are truthful.

Theorem 2 Under the assumption that all actions are visited infinitely often, in the limit, strate-

gic lying is not beneficial in proactive-ε-Greedyt.

The proof is essentially the same as the previous proof.

Theorem 3 Under the assumption that all actions are visited infinitely often, in the limit, strate-

gic lying is not beneficial in proactive-DIELt.

In our previous proof, we already showed that in the limit, a lying expert will always receive

a higher penalty than a truthful expert which will effectively lower the reward mean.

For any reward sequence r1, r2, . . . , rn, and a penalty sequence p1, p2, . . . , pn,

−max(p1, p2, . . . , pn) ≤ ri ≤ 1−min(p1, p2, . . . , pn),

1 ≤ i ≤ n.

Now, distrust ≤ 2. Hence, 0 ≤ pi ≤ 2C2, 1 ≤ i ≤ n.

Hence, −2C2 ≤ ri ≤ 1, i.e., all rewards are finite and bounded. This means, in the limit, the

variance of the reward sequence is finite and bounded. Hence,

lim
n→∞

UI(a) = lim
n→∞

(m(a) +
s(a)√
n

) = m(a) (5.4)

This means, in the limit, the reward for DIEL will be dominated by its mean reward. Since a

lying expert will always incur higher penalty than a truthful expert, an expert will have a higher

reward mean when it behaves truthfully.

Unlike the Q-learning variants and ε-Greedy algorithms, there is no guarantee for DIEL

that all actions are visited infinitely often, although a variant can guarantee that condition with

random visits at ε probability, and perform similarly in the finite case for small enough ε.
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5.5 Experimental Setup

Referral algorithms and baselines: We have proposed five proactive algorithms listed in Ta-

ble 5.1. Our baselines are the corresponding non-proactive versions.

Data set: As our synthetic data set, we used the same 1000 scenarios used in all our experiments

in the uninformed prior setting (except the data set where expertise drift occurs). Each scenario

consists of 100 experts connected through a referral network and 10 topics. For our experiments

involving SAT solvers, we used the same 100 SATenstein (version 2.0) solvers obtained from

the experiments presented in KhudaBukhsh et al. (2016d) as experts as in our previous experi-

ments.

Algorithm configuration: The version of DIEL we used is parameter free. The remaining pa-

rameterized algorithms are configured by selecting 100 random instantiations of each algorithm

and running them on a small background data set (generated with the same distributional param-

eters as our evaluation set). We selected the parameter configuration with the best performance

on the background data.

Performance measure: Following our previous experiments on uninformed prior setting, we

used overall task accuracy as our performance measure. In order to empirically evaluate Bayesian-

Nash incentive compatibility, we followed the same experimental protocol followed in Khud-

aBukhsh et al. (2016a) (described in Chapter 5.6.2).

Computational environment: Experiments on synthetic data were carried out on Matlab R2016

running Windows 10. Experiments on SAT solver referral networks were carried out on a cluster

of dual-core 2.4 GHz machines with 3 MB cache and 32 GB RAM running Linux 2.6.

5.6 Results

Before presenting our results in further detail, here, we first list our key findings:
• A comparative analysis of the proactive referral algorithms on our synthetic set shows that

all proactive versions of the referral algorithms we proposed beat the original versions

under the condition of truthful reporting of skills.
• All proactive referral algorithms are robust to noisy self-skill-estimates.
• All proactive referral algorithms demonstrate strong empirical evidence of being Bayesian-

Nash incentive compatible.
• Performance results on the SAT Solver application indicate that the main conclusions de-

rived from synthetic data, hold for more realistic data as well.
• The new algorithms are robust to dynamic changes in evolving networks.
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µtbest µtsecondBest
proactive proactive proactive proactive proactive
DIEL DIELt εGreedy εGreedyt Q-Learningt

Truthful Truthful 1.00 1.00 1.00 1.00 1.00
Truthful Overbid 0.99 1.02 0.99 1.03 0.97
Overbid Truthful 1.00 1.19 0.98 1.24 1.35
Overbid Overbid 0.97 1.25 0.98 1.36 1.39
Truthful Underbid 1.04 1.15 1.00 1.08 1.21
Underbid Truthful 1.09 1.16 1.06 1.10 1.17
Underbid Underbid 1.22 1.32 1.12 1.24 1.56
Underbid Overbid 1.11 1.15 1.09 1.09 1.14
Overbid Underbid 1.04 1.50 1.04 1.34 1.63

Table 5.2: Comparative study on empirical evaluation of Bayesian-Nash incentive-compatibility. Strate-
gies where being truthful is no worse than being dishonest are highlighted in bold.

5.6.1 Overall Performance Gain

Figure 5.2 compares the performance of the proactive algorithms with their non-proactive ver-

sions under the assumption of truthful reporting and accurate self-skill estimates. The two main

aspects of note are performance in the early learning phase, and steady state performance. We

first observe that, as expected, all new proactive algorithms did better than their non-proactive

counterparts, both in steady state and during the early phase of learning, while noting that the gap

between DIEL and its proactive versions was less than the corresponding difference for the other

two algorithms. We also obtained a modest performance gain over the penalty on failure mecha-

nism and both proactive-DIELt and proactive-ε-Greedyt did slightly better than the algorithms

obtained using penalty on failure.

5.6.2 Discouraging Strategic Lying

So far, we have shown that our proposed proactive referral algorithms address the cold start

problem better than their non-proactive counterparts and are immune to a small amount of Gaus-

sian noise in self-skill estimates. Here, we strive to deal with the case of deliberate (strategic)

misreporting, e.g. experts trying to get more business by overstating (or counter-intuitively, un-

derstating) their skills. Note that, since a noisy bid can be interpreted as deliberate misreporting

and vice-versa, robustness to noisy self-skill estimates and robustness to strategic lying are two

orthogonal goals.

Since proving incentive compatibility in a multi-expert distributed learning setting is a chal-
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lenging task, we treat the number of referrals received as a proxy for payment and empirically

analyze Bayesian-Nash incentive compatibility the following way. Since we are interested in

knowing if their exists any specific strategy combination (e.g., truthfully report best-skill but

overbid second-best skill) that could fetch more referrals, we consider all possible such com-

binations (listed in Table 5.2). For a given strategy s and scenario scenarioi, we first fix one

expert, say eil. Let truthfulReferrals(eil) denote the number of referrals received by eil beyond

a steady-state threshold (i.e., a referral gets counted if the initial expert has referred 1000 or

more instances to her subnetwork) when eil and all other experts report truthfully. Similarly, let

strategicReferrals(eil) denote the number of referrals received by eil beyond a steady-state thresh-

old when eil misreports while everyone else advertises truthfully. We then compute the following

Incentive Compatibility factor (ICFactor) as :

ICFactor =

1000∑
i=1

truthfulReferrals(eil)

1000∑
i=1

strategicReferrals(eil)
.

A value greater than 1 implies truthful reporting fetched more referrals than strategic lying.

Table 5.2 presents the ICFactors for each algorithm and each strategy combination. We see

that, beyond the steady-state threshold, strategic misreporting is hardly beneficial and in fact

counterproductive in most cases. Proactive-DIELt was (slightly but consistently) better at dis-

couraging each strategy combination than proactive-DIEL. The only case truthful advertising

fetched slightly fewer referrals for proactive-Q-Learningt is when an expert truthfully reports

her top skill but overbids her second-best skill (in fact a hard case for all the algorithms). This

is likely the result of the way the posted second-best skill is used to bound implicit bids. How-

ever, on doubling the horizon (i.e., considering 10,000 samples per subnetwork), we found that

proactive-Q-Learningt’s ICFactor improved to 1.04.

5.6.3 Robustness To Noisy Skill Estimates

So far, we have shown that our proposed proactive referral algorithms address the cold start

problem better than their non-proactive counterparts and provide stronger discouragement to

strategic lying. However, even when experts post their skills truthfully, their self-estimates may

not be precise (see, e.g., MacKay et al. (2014)). Imprecise skill estimation in proactive skill

posting was first explored in (KhudaBukhsh et al., 2016a,b). Note that, since a noisy bid can

be interpreted as deliberate misreporting and vice-versa, robustness to noisy self-skill estimates

and robustness to strategic lying are two major goals and there lies an inherent trade-off between

them.

We assume Gaussian noise on the estimates in the form of µ̂ = µ + N (0, σnoise), where µ̂
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is an expert’s own estimate of her true topic-mean µ, and σnoise is a small constant (0.05 or 0.1

in our experiments). Figure 5.3 compares the performance of the proactive referral algorithms

with noisy estimates with the noise-free case and their non-proactive versions. Resilience to the

noise depends on the algorithm. In proactive-DIELt, a small amount of noise (0.05) degrades the

steady-state performance, but retains a small advantage over the non-proactive version. While

both versions of noisy proactive-DIELt do substantially better in the early-learning phase, there

is no steady-state performance gain in the presence of larger noise. Proactive-ε-Greedyt was the

most resilient (not shown in the figure): even with a larger noise value, it kept a significant lead

over the non-proactive version even in the steady state (task accuracy: 77.33% (σnoise = 0.1),

76.76% (σnoise = 0.05), and 75.26% for the non-proactive version). Proactive-Q-Learningt
was the most sensitive: with smaller noise value, the early-learning-phase gain disappears again

in the steady state; with higher noise value, proactive skill posting became counter-productive.

5.6.4 Evolving Networks

In our earlier experiments, we found that proactive-DIEL was resilient to small amount of dis-

tributed network change (5% network change) and a large amount of one-time network change

(20% network change). Here, we revisit the problem of evolving networks analyzed in Chap-

ter 4.2 but unlike our previous experiments, we consider more severe extents of distributed net-

work change. We have already seen that a primary benefit of proactive methods is that they

address the cold-start problem. Rapid improvement in the early learning phase is perhaps even

more important for evolving networks. Figure 5.4 presents an extreme case of 20% network

change at regular interval. We found that the proactive-DIEL handled the network changes

much better than the original DIEL even in presence of noise in self-skill estimates.

5.6.5 SAT Solver Referral Network

So far, we have presented results on our synthetic data with well-behaved and predetermined

distributions for expertise as well as noise on the self-skill estimates. As in (KhudaBukhsh et al.,

2016b), we also ran several experiments on a referral network of high-performance Stochastic

Local Search (SLS) solvers, a more realistic situation in which expertise or noise in self-skill

estimates do not obey known parameterized distributions. Our experts are 100 SATenstein

solvers with varying expertise on six SAT distributions (map to topics). We ran experiments on

10 randomly chosen referral networks from our synthetic data set. In order to save computational

cycles, in these experiments, we only focus on the referral behavior. This explains why our choice

of horizon is smaller (also, the number of topics is less than the synthetic data set). On a given
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SAT instance, the referred SATenstein solver is run with a cutoff time of 1 CPU second. A

solved instance (a satisfying model is found) fetches a reward of 1, a failed instance (timeout)

fetches a reward of 0.

Figure 5.5 compares the performance of proactive and non-proactive algorithms on this data

set. Figure 5.5(a) shows that proactive-DIELt retains the early-learning phase advantage over

DIEL, but the slight performance gain in steady state is missing. On the other hand, Figure 5.5(b)

shows qualitatively similar behavior as the synthetic data set: throughout the learning phase,

proactive-ε-Greedyt maintained a modest lead over its non-proactive version.

5.7 Revisting the Research Questions

In this chapter, we are primarily concerned with the following research questions:

Does access to (noisy) priors on their colleagues’ expertise improve an expert’s referral per-
formance? Yes, the performance of DIEL and DMT both improved substantially in presence of

noisy priors.

Does access to (noisy) priors on a subset of topics improve an expert’s referral perfor-
mance? Yes, we have presented five proactive algorithms that use initialization techniques to

bound the implicit bids and thus perform better than their non-proactive counterparts.

How to design proactive skill posting algorithms that discourage strategic lying to attract
more business? We have presented two penalty mechanisms: Penalty on failure and Penalty on

distrust, to discourage strategic lying.

How extensible are the proactive skill posting techniques? Out of the five categories of

referral-learning algorithms we studied, we successfully proposed proactive variants belonging

to three of them.
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Figure 5.2: Performance comparison of proactive algorithms and corresponding non-proactive
versions
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Figure 5.3: Robustness to noisy skill estimates
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Figure 5.5: Performance comparison on SAT solver referral networks
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Chapter 6

Conclusions and Future Work

In this thesis, we have presented referral networks, an Active Learning framework where experts

can redirect difficult instances to their colleagues. We found that effective referrals substan-

tially improve the overall performance of the network. Through a series of extensive empirical

evaluations both on synthetic and non-synthetic data, we identified a set of algorithms that can

successfully address the learning-to-refer challenge even in presence of practical constraints like

capacity constraints, evolving network and drift in expertise. In order to tackle the cold-start

problem, we have proposed an augmented learning setting, proactive skill posting, in which ex-

perts are allowed a one-time local-network-advertisement of a subset of their skills.

6.1 Summary of Contributions

In this thesis, we have proposed a novel learning setting, identified key algorithms suitable for

tackling the learning-to-refer challenge, assessed their relative merits and shortcomings consid-

ering several robustness criterion, and proposed modified versions of a subset of algorithms to

deal with an augmented learning setting, also, first proposed here, where experts are allowed to

share private information with their colleagues.

In particular, we proposed solutions to three inter-linked research questions:

1. In an Active Learning setting, how can we use communication between experts (agents or

teachers) to improve overall performance?

2. Are our proposed methods to learn referrals robust to practical factors like capacity con-

straints, evolving networks and expertise drift?

3. How side-information like advertised priors can be incorporated into algorithms in a truth-

ful manner to tackle the cold-start problem?
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6.1.1 Referral Networks

The existence of a single, omniscient, indefatigable and infallible oracle assumption in classical

Active Learning has some serious limitations when applied to practical Machine Learning appli-

cations, as we often have multiple annotators with varying expertise and availibilities. Proactive

Learning has extended Active Learning along several dimensions by considering multiple oracles

with time-varying accuracy. In this work, we introduce the notion of communication between

experts in the form of referrals, an aspect not considered in Proactive Learning or any other pre-

vious Active Learning research. We propose a novel learning framework where agents (teachers)

are connected through a referral network and are allowed to redirect difficult instances to each

other. With modern machine learning applications attempting to solve increasingly non-trivial

tasks and requiring sophisticated training data in order to achieve proficiency level comparable to

human-experts, we see such network of experts improving the overall effectiveness of teachers.

In this part of our work, we were primarily interested in assessing the viability of this learn-

ing setting when starting from uninformative priors. Our main goal was to identify a set of

algorithms that exhibit rapid improvement in the early phase of learning. To this end, we have

found Distributed Interval Estimation Learning, DIEL, to be the most-effective algorithm. Other

high-performance algorithms include ε-Greedy, Double Q-Learning and Optimistic

Thompson Sampling. We have also analyzed multi-hop referrals, a more general setting of

referral networks and found DIEL as a strong candidate with Thompson Sampling catching

up when number of hop increases.

6.1.2 Robustness Analysis

The notion of a network adds newer challenges such as reluctance of busier experts creating the

need for finding comparable alternatives and attrition and influx of experts requiring the need

for rapid integration of newly joined experts. Also, adding to the difficulty of learning to refer,

expertise could improve (or degrade). We conducted an extensive set of experiments to assess

the robustness of our referral learning algorithms. Specifically, we considered practical factors

such as capacity constraints, evolving networks, and expertise drift - that are largely ignored in

the Active Learning literature.

We found that all learning algorithms exhibit graceful degradation in presence of capac-

ity constraints and evolving networks. For evolving networks, our augmented learning setting,

proactive skill posting, proved to be particularly useful. For expertise drift, we found DIEL, the

best-performing algorithm when the distributional parameters of expertise do not change, was

susceptible. We designed Hybrid, a new performance-gradient based switching algorithm, that
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tackled expertise drift the best.

6.1.3 Proactive Skill Posting

In practice, experts do not start from completely uninformative priors on the skills of their col-

leagues. Moreover, experts often tell their colleagues about their expertise areas. We modelled

such sharing of noisy priors in our augmented learning setting, proactive skill posting. The key

challenge in this setting was to elicit truthful information from the experts since experts as selfish

agents, may overstate their skills to attract more business.

We extended algorithms on uninformed prior setting with an initialization and penalty mech-

anism and proposed five new proactive algorithms. Our algorithms proved to be robust to noisy

self-skill estimates, strategic lying and evolving networks. All proactive algorithms obtained

improved steady-state performance and substantial early-learning phase advantage over their

non-proactive counterparts. Of the two penalty mechanisms we studied, penalty on distrust

demonstrated slightly better empircal performance than penalty on failure in countering strategic

misreporting.

6.2 Future Directions

Our work can be extended in several ways. In this section, we outline some of the prominent

research directions.

6.2.1 Referral Networks

Considering richer referral frameworks, referral bias, correlated topics and hierarchical topic-

structure could be challenging research directions in the basic referral framework.

Richer Referral Framework

The referral mechanism can be modified in several ways. We outline some interesting directions

we intend to explore in the future.

Visibility of the actual solver in a multi-hop referral chain: In a multi-hop referral chain, only

the expert who referred directly to the colleague who solved the problem knows about the true

solver. If the expert not only communicates the solution, but also who solved it in the multi-hop

refferal chain, the additional information can be utilized to improve the expertise estimates and

also take an informed decision depending on the remaining query budget (i.e., if I know A is
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weak on a given topic but has a strong colleague in her subnetwork, I will only refer to A when

the remaining query budget for the task is 2 or more).

Richer handling of overload situations: In our experiments involving capacity constraints, we

assumed that an expert becomes completely unavailable when she is overloaded. However, in

a practical scenario, she should still be able to refer or maintain a queue of tasks to solve later.

Also, since we found that a highly-skilled expert is more likely to get overloaded, a meaningful

research question could be: if an expert knew the fraction of the time colleagues were busy (not

accepting new tasks), can we utilize this information for an improved estimate of their skills?

Shared updates: So far, we assumed each expert is learning effective referrals completely on

their own. However, expert-pairs or team of experts sharing a common goal is a real-world phe-

nomenon. We intend to explore shared updates where one expert can benefit from observations

of other experts.

Experts with Bias

So far we assumed that no expert had any bias toward or against any other expert in the net-

work. Unless it is a diversification step, every time an expert makes a referral decision, she picks

the expert with the highest score breaking ties randomly, and an expert’s referral decisions are

independent of any reciprocal behavior. However, it is easy to think of practical applications

for which this may not hold. For example, if resolving a label earns money, then we would not

expect any asymmetric referral relation – where expert A refers often to expert B but B doesn’t

return the favor – to continue for long. Our experiments indicate that such relations may in fact

be rather common: from Table 6.1 we learn that 42% of the referral links had an 80-20 referral

share or worse. Conversely, two (or more) experts on the same topic may collude by system-

atically referring instances of that topic to each other. Devising learning algorithms immune to

such strategic behavior could be a promising line of future work.

Referral Share Percentage of referral links
exhibiting the behavior

> 60% 78.62%
> 70% 59.57%
> 80% 41.81%
> 90% 19.64%

Table 6.1: Asymmetry in referral. The left column indicates referral link-wise referral share.
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Hierarchical Topic Structure

In our experiments, we have considered noisy topic identification and found our referral-learning

algorithms to be robust enough when the topic misclassification rate is small. Extending referral

network to a model with hierarchical topic structure, where an expert may not be able to identify

the specific subtopic of a task but only one of its super-topics, may lead to more nuanced referral

behavior that would be worth studying.

Correlated Topics

We considered that expertise on one topic is independent of expertise on any other topic. How-

ever, in practical scenarios, we often see that highly-skilled experts on a specific area also exhibit

proficiency in related areas. If information about such topical correlations is available, a mean-

ingful future research question could be: is it possible to algorithmically propagate an expert’s

skill on topick to correlated topic topick+1, either as a prior if we have no knowledge of the

expert’s skills on topick+1 or as an updated estimate otherwise? Note that, when knowledge in

topical correlations is available to an expert, the bounding technique using the second-best skill

in proactive skill posting can be modified with tasks correlated to the best and second-best skill

receiving higher initial estimates than tasks uncorrelated to the top-two skills.

Non-stationarity in Topic Distributions

In our experiments, we have considered each topic is equally likely and the initial expert is

chosen uniformly at random. However, in real-world, certain topics could be more predominant

than others and there could be extremely rare task-classes. In such cases, experts may require to

prioritize their referral-learning with a greater emphasis on popular topics. Also, trending topics

would experience a sudden surge of task-requests requiring experts to find out colleagues who

can handle such topics if not already known. Modeling non-stationarity in topic distributions and

analyzing its effect on referral networks could be an interesting research direction.

We have only considered uniform distribution while selecting the initial expert. However,

the choice of initial expert may not be uniform and may also depend on the topic. For instance,

a medical professional is far more likely to receive a medical question than a programming

language question. In our experiments involving capacity constraints, we have seen that the load-

situations of experts were correlated with their expertise. In those experiments, the distribution

for selecting the initial expert would start out as uniform, but eventually it will exhibit non-

stationarity depending on the load-situation and availability of the individual experts. However,
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we haven’t explicitly modeled non-stationarity in our distributional choice for the selection of

the initial expert and also restricted ourselves only to uniform distribution.

Finite Horizon Bound for DIEL

In our experimental results both on real data and synthetic data KhudaBukhsh et al. (2017b), we

have found that DIEL’s finite horizon performance is substantially better than a wide range of

algorithms. In Auer et al. (2002), an algorithm UCB1-tuned was found to have superior em-

pirical performance than UCB1. In our experiments involving expertise drift, we also found that

Pessimistic TS-DIEL could be a useful component for dealing with evolving expertise.

However, none of these algorithms’ theoretical finite-horizon regret bounds are known; they all

have a variance term in common (which is precisely the reason for the difficulty in proving the

finite-horizon regret bound). We would like to attract the attention of the MAB community to-

wards this observation to see whether tight regret bounds might be determined, as many of these

algorithms have demonstrated strong performance in practice.

6.2.2 Proactive Skill Posting

Our work on proactive skill posting can be extended in the following ways:

Extensibility

Whereas we succeeded in designing proactive skill posting versions of DIEL and ε-Greedy and

obtained preliminary results for Q-Learning with a different penalty-mechanism, the chal-

lenge of robust priors for MABs has broader appeal beyond referral networks, including proac-

tive versions of Thompson Sampling and its many applications. However, the three-fold

goal of improved cold-start performance, robustness to noisy self-skill estimates and immunity

to strategic lying is difficult to achieve and requires careful case-by-case algorithmic design. For

example, the initialization mechanism of DIEL (or ε-Greedy) would not work in the case of

UCB1 since UCB1 uses a different exploration technique from DIEL. A deeper exploration of

algorithm-specific and more general proactive-posting to provide incentive-compatible guaran-

tees for a wide range of MAB-relevant algorithms could be an important follow-up work.

Market-aware Skill Posting

WithK topics, the current assumption is that experts are only aware of their individual skills, and

advertise their top skills, e.g., µtbest and µtsecondBest
, to their colleagues. However, in more realistic
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settings, topics can have variable difficulties, and experts often have aggregate knowledge of skill

distributions; i.e., they may know whether their skills are unique or common. Specifically, we

propose that every expert maintains a noisy estimate of µtk (average network skill on each topic

tk) and reports the skills with her largest relative advantage µ∆ (where for a given expert topic

pair 〈ei, tk〉, µ∆tk
= µei,tk−µtk). Our preliminary results indicate an advantage to exploiting such

topic-distributional information, we have yet to achieve incentive compatibility in this setting,

especially with tolerance to noisy self-skill or topic difficulty estimates.

So far, our results indicate that proactive algorithms are tolerant to small amount of noise in

self-skill estimates. In presence of a larger amount of noise, even when µtk is not known, the

advertised priors can be regularized relative to the subnetwork. For instance, if it is common

knowledge that a particular topic is difficult and an expert’s first few attempts indicate that she

grossly overestimated her skill, her reported skill can be re-adjusted with the average of other

colleagues’ advertised priors.

Strategyproofness

While misreporting was shown to be of little or no benefit when other experts report truthfully,

a stronger degree of incentive compatibility, strategyproofness, would require proving truth is

the optimal strategy for each expert no matter what other experts do. A further investigation

on what modifications to the proactive algorithms, or which additional conditions or constraints

would be required to achieve this stronger guarantee could be a challenging research goal. Unlike

our previous experiments with Bayesian-Nash incentive compatibility, empirical evaluation will

be much harder given that we need to sample from a vast strategy-space of a larger number of

experts.

Continuous Rewards

In real life, many tasks involve task-responses beyond simple binary states (e.g., what fraction

of all constraints an optimization algorithm satisfies, by how far the prediction of a stock value

is off, in a scale of 1-10, how confident the doctor is in diagnosing her patient with stage-two

melanoma). Exploring reward mechanisms to handle continuous rewards could further improve

network performance and broaden its impact, as an effective referral will maximize not only

solution likelihood but also solution quality.

89



6.2.3 Robustness Analysis

Many of our robustness criterion were tested in isolation, i.e., when we were interested in as-

sessing the effect of evolving networks, we did not consider capacity constraints. Our first two

proposed directions combine expertise drift with skill posting and evolving networks. Different

notions of drift and a structured approach to design mixed-strategy multi-armed bandit algo-

rithms conclude our future research directions.

Skill-posting with Drift

In proactive skill posting with skill drift, a truthful expert will get penalized if she improves (or

gets worse) over time, as her initial estimates are no longer valid. We propose the following

modifications to proactive skill posting for tackling expertise drift.

• Updating the posted advertisement: Since the penalty is a function of advertised prior, it

is crucial for the drifting experts to keep their colleagues informed about their current skill

level. We introduce the notion of updating advertisement (constrained by a budget similar

to previous setting) that an expert can occasionally use to update their colleagues. For a

gradual change, an update advertisement of the nature 〈ei, ej, tk, ↓〉 (in case of degradation)

or 〈ei, ej, tk, ↑〉 (in case of improvement) could be sent out to the colleagues. For a sudden

large shift, an update advertisement of 〈ei, ej, tk,∆µ〉 can be used where ∆µ is the amount

of shift.

• Shared updates: In a non-stationary drift setting, shared updates (see, Chapter 6.2.1)

could be particularly useful where one expert can share an observed recent improvement

(or sudden loss of skill) of a common colleague.

Evolving Networks

When the estimated perf∆ falls below a threshold, the assumption is the exploration component

of our hybrid algorithm has largely saturated. However, in evolving networks where new experts

can join in and old experts can drop off of the network, this could also mean that a subset of

old experts should be replaced by a set of new experts with initially unknown expertise. Distin-

guishing between the case of network composition change and expertise drift to select the best

learning strategy under both conditions presents a new challenge.
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Topic-dependent Drift

In this work, we assumed the distribution parameters for drift do not vary across topics. However,

in real world, some topics may be prone to rapid skills change, whereas others are more stable.

It is not yet clear if the proposed methods are robust to a mixture of drift distributions.

Expertise-level-dependent Drift

We assumed that the nature of drift is independent of the present expertise. However, in real life,

a strong expert is unlikely to lose or improve her skill rapidly, whereas a weak expert may be

more likely to substantially improve in a short span of time, i.e. a student rapidly learning to

become a true expert. Extending our work to expertise-level-dependent drift could be a possible

future direction.

Mixed Strategy Algorithm Design

Thus far we primarily focused on a performance-gradient-based algorithm switch. We propose

a richer systematic exploration of the algorithm configuration challenge, avoiding combinatorial

search in configuration space. Specifically, say, we intend to create a mixed-strategy referral

algorithm from K algorithms. We declare K parameters w1, . . . , wK such that algorithm i is

executed with a probability wi

W
where W =

∑K
i=1wi. We can obtain a mixed-strategy referral

algorithm by configuring the parameterized algorithm for discrete domains of wis on a referral

networks data set with the overall task accuracy as the objective function to maximize. For this,

leveraging the advances in the algorithm configuration literature (see, e.g., (Hutter et al., 2009;

Ansótegui et al., 2009, 2015; López-Ibánez et al., 2011; Lang et al., 2015; Ansel et al., 2014;

Hutter et al., 2011)) could be useful.
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