Desigh Document

Co-op Evaluation System
Senior Project 2014-2015

Team Members:
Tyler Geery
Maddison Hickson
Casey Klimkowsky
Emma Nelson

Faculty Coach:
Samuel Malachowsky

Project Sponsors:
Jim Bondi (OCSCE)
Kim Sowers (ITS)

Table of Contents

Table of Contents
Revision History
1 Introduction

1.1 Purpose
1.2 Scope

1.3 Overview
System Overview
2.1 Purpose
2 System Context
2.3 User Roles
2.4 Design Constraints and Limitations
Data Design
3.1 Data Description
3.1.1 Users, Departments, Colleges, and Configurations
Relational Model
Context
Element Catalog
3.1.2 Email Notifications and Logs
Relational Model
Context
Element Catalog
3.1.3 Evaluations, Forms, and Questions
Relational Model
Context
Element Catalog
Component Design
41 Reporting Service
4.2 Authentication Service

N

N

N N
~

[[6V)

8

4.2.1 User
4.2.2 Privileges
4.2.3 EmployerAuthentication

4.2.4 Shibboleth
4.3 Form Service

4.3.1 FormCommand
4.3.2 AddForm

4.3.3 RemoveForm

4.3.4 QuestionCommand
4.3.5 AddQuestion

4.3.6 RemoveQuestion

4.3.7 UpdateQuestion

4.4 Email Service

4.41 Email Logging Service
4.4.2 Email Template Service
4.5 User Management Service
4.51 UserCommand
4.5.2 AddUser
4.5.3 RemoveUser
4.6 Evaluation Service
4.6.1 EvaluationCommand

4.6.2 AddEvaluation

4.6.3 UpdateEvaluationAnswers

4.6.4 UpdateEvaluationStatus

4.7 File Import Service
4.8 School Service
4.8.1 SchoolCommand
4.8.2 Add
4.8.3 Remove
4.9 Data Mapping
Human Interface Design

51 Overview of User Interface

(&)}

5.2 Screen Images and Interactions

References
Appendices

Appendix A: Glossary
Appendix B: Issues List

N 1o

Revision History

Version Primary Author(s) \[l):zzigﬁt'on i Date Completed
Emma Nelson,

v1.0 Maddison Hickson, | \ o) revision December 13, 2014
Casey Klimkowsky,
Tyler Geery

v1.1 Casey Klimkowsky ggfj:)zdsiﬁ?;igt February 17, 2015

1 Introduction

1.1 Purpose

The purpose of this document is to provide a detailed system design for the various
components that comprise the new Co-op Evaluation System. While the Software
Architecture Document provides a high-level structural view of the application and how the
application interacts with external systems, this document focuses on just the system itself,
and how its various software components are designed and how they interact with one
another.

This document is intended to help the development team determine how the system will be
structured at a detailed level. It is also intended for the project sponsors to sign off on the
detailed structure before the team shifts into development. Finally, the project coach can use
this document to validate that the development team is meeting the agreed-upon
requirements during his evaluation of the team’s efforts.

1.2 Scope

The current Co-op Evaluation System, an application used by OCSCE, has a number of
performance, reliability, usability, and maintainability issues. Among others, session timeouts
and submission timeouts are inherent problems of the current system. A new version started
from scratch with up-to-date technologies needs to be developed.

The purpose of this project is to re-engineer the Co-op Evaluation System in order to leverage
newer web technologies while also improving performance and user interaction. One of our
primary goals is that by the conclusion of this project, we will, at a minimum, have supplied
OCSCE and ITS with a product that is functionally equivalent to the existing system, but with
fewer of the aforementioned issues. Time permitting, we hope to implement a small number of
enhancements, as defined by our Software Requirements Specification.

1.3 Overview

This document provides a general description of the functionality, context, and design of the
project, and addresses the system design from several viewpoints. The first design aspect is
a comprehensive relational model, which outlines how information will be organized in the
system’s database. This is then followed by a detailed design of each of the system’s
components, which is achieved through UML diagrams, such as class diagrams and
sequence diagrams, and accompanying descriptions. Finally, the last element of design
addressed in this document is user interface design. Wireframes are provided as a concept of
what the system’s user interface will ultimately look like.

2 System Overview

2.1 Purpose

The purpose of the Co-op Evaluation System (CES) is to allow students to provide feedback
on their most recent co-op, and for employers to provide feedback on a student’s performance
during their most recent co-op. Additionally, the system is used by faculty to approve or fail a
student’s co-op, and is also used by OCSCE to gather data on students’ co-ops.

For details on the system’s functionality, please refer to the Software Requirements
Specification.

2.2 System Context

The below diagram shows the basic flow of data into and out of the system at a high level.
Our system and direct interfaces are represented inside of the blue container, with the outside
entities depicting how data is created and imported into our system. In this diagram, the
“Co-op Evaluation Database” represents the relational database used to store system
information, which is outlined in Section 3. The box labeled “Co-op Evaluation System”
represents the core functionality of the system, which is broken down as a series of

components in Section 4.
Simplicity Shibboleth Custom
Authentication Employer Login
| Jim's

Campus
Solutions (SIS)
Co-op Feed

Co-op Evaluation

Co-0
9 System

Evaluation
Database

OCES's Co-0p @
Input File

For further information on the architectural design and its influences, please reference the
Architecture Document.

OCES's SQL
Server Co-op
Registration

Co-op
Placement

http://drive.google.com/open?id=1IjsXk0TXYJb2UMEAIEmqoMcyV-Km0TBlHVFyWFJBtww
http://drive.google.com/open?id=1IjsXk0TXYJb2UMEAIEmqoMcyV-Km0TBlHVFyWFJBtww
https://www.lucidchart.com/documents/edit/ca91d3b1-365c-401e-aae1-f11b07b88443/0?callback=close&v=1356&s=612
https://docs.google.com/document/d/1KDjtp__8341JOYk5X0ezHX4F23qbkUwyrpvEjSfqVO4/edit?usp=sharing

2.3 User Roles

The following user classes represent the four main roles that users have when interacting with
the system, which is done through the use of a desktop or mobile computer:

Student
A student uses the application to fill out a Work Report following a co-op block.

Employer
An employer uses the application to fill out an Employer Evaluation for a student

following a co-op block.

Evaluator
An evaluator uses the application to review the student’s and employer’s evaluation
submissions to determine the student’s grade (S or F).

Administrator

An administrator uses the application to perform various administrative tasks, including
gathering statistical data from evaluation submissions. Administrator has access rights
to all departments and colleges.

For details on the functionality associated with each of the user roles, please refer to the
Software Requirements Specification.

2.4 Design Constraints and Limitations

The system must comply with the development guidelines provided to us by ITS, as defined
by the EWA Student Development Guidelines wiki page. At a high level, these guidelines
include approved application frameworks, build tools, application server technologies,
database standards, and several other technology standards.

http://drive.google.com/open?id=1IjsXk0TXYJb2UMEAIEmqoMcyV-Km0TBlHVFyWFJBtww

3 Data Design

3.1 Data Description

3.1.1 Users, Departments, Colleges, and Configurations

Relational Model

PK |administrationUserld | Integer PK |employerUserid Varchar(64} PK |configurationid |Integer
userName Varchar(64) employerEmail Varchar(64) configkey Varchar(16)
name Varchar(64) employerFirstName Varchar(64)} configValue Varchar(128)
createDate DateTime employerLastName Varchar(64) createDate DateTime
createBy Varchar(15) companyName Varchar(64)} createBy Varchar(15)
modDate DateTime passwordHash Varchar(128) modDate DateTime
modBy Varchar(15) passwordLastChanged |DateTIime modBy Varchar(15)

createDate DateTime
createBy Varchar(15)}
modDate DaleTime
modBy Varchar(15)}

PK |departmentUserid Integer PK |departmentUserJoin |Integer PK |departmentld Integer
name Varchar(64) FK |departmentUserld Integer departmentCode |Char(4)
userName Varchar(64) H4 j] FK |dey d Integer ol H departmentName | Varchar(64)
createDate DateTime createDate DateTime FK |collegeld Integer
createBy Varchar(15) createBy Varchar(15) createDate DateTime
modDate DateTime modDate DateTime createBy Varchar(15)
modBy Varchar(15) modBy Varchar(15) muodDate DateTime

modBy Varchar(15)
PK [collegeld Integer
collegeName Varchar(64)
createDate DateTime
createBy Varchar(15)
maodDate DateTime
modBy Varchar(15)
Context

These tables are concerned with functionality around system users, departments and
colleges, and miscellaneous configurations needed by the system.

Element Catalog

AdministrationUser
Contains administrative users, including the administrator’s University ID and full name.

EmployerUser
Contains employer account information. Since employers are not authenticated through
Shibboleth, their account information has to be stored in this system. An employer account is

7

https://www.lucidchart.com/documents/edit/067357f5-9e85-4a9c-8a5b-dc4eec4e7901/0?callback=close&v=2520&s=612

comprised of their email address, and a password, which is stored as a hash. The date when
the employer last changed his or her email is stored here as well, in case there is a need to
have employers periodically change their password.

DepartmentUser
Contains department users, including the user’s University ID and full name.

DepartmentUserJoin
Associates departments with department users. A user may be a part of multiple departments,
and a department has many users, which is why there was a need for a join table.

Department
Contains departments at RIT, including the department name and code, and the name of the
college the department belongs to.

College
Contains colleges at RIT, including the unique college acronym (e.g. GCCIS).

Configuration
Contains any configuration values that are required by the system, and must be saved within
the database itself.

3.1.2 Email Notifications and Logs

Relational Model

PK |emailLogEventld |Integer PK |emailContentld Integer PK |departmentEmailContentld | Integer
FK |logEventld Integer FK |emailTypeld Integer FK |departmentld Integer
FK |emailContentld Integer Bt H subject Varchar(128) 4 H{ FK |emailContentld Integer
FK |evaluationld Integer header Clob emailCentent Clob
recipient Varchar(64) footer Clob createDate DateTime
cc Clob createDate DateTime createBy Varchar(15)
bee Clob createBy Varchar(15) modDate DateTime
sender Varchar(64) modDate DateTime modBy Varchar(15)
createDate DateTime modBy Varchar(15) +
createBy Varchar(15)
modDate DateTime
modBy Varchar(15)
emailTypeld
name
createDate Department
createBy
modDate
modBy
- logEventSeverityTypeld |Iinteger
H name
PK |logEventid Integer createDate
FK |logEventTypeld Integer createBy
FK |logEventSeverityTypeld Integer H madDate
time DateTime modBy
message Clob
userld Integer
createDate DateTime H
createBy Varchar(15)
modDate DateTime
modBy Varchar(1s) PK |logEventTypeld |Integer
H name Varchar(64)
createDate DateTime
createBy Varchar(15)
modDate DateTime
modBy Varchar(15)

Context
These tables are concerned with functionality surrounding email notifications, and various
events within the system.

Element Catalog

LogEvent

A log entry representing an event in the system including a date and a time, a message
explaining the event, which user caused the event, the type of event, and the severity of the
event.

LogEventSeverityType

https://www.lucidchart.com/documents/edit/99aecbc2-9a1a-4563-a96c-9d332fb857d7/0?callback=close&v=3298&s=612

This table contains a list of all of the different severity levels a log entry can be.

LogEventType
This table contains a list of all of the different event types that can occur in the system.

EmailLogEvent

Contains information about an email, including the subject line, sender, receivers, and a link
to the content.

EmailContent

The content of an email, including the subject line, header, footer, and the time it was last
updated.

EmailType
The type of an email (e.g. Reminder or Employer Login).

DepartmentEmailContent
Contains special department-specific information in an email.

10

3.1.3 Evaluations, Forms, and Questions

Relational Model

PK

questionTypeld Integer
name Varchar(64)
description Clob
createBy Varchar(15)

IikertScalel
lkenScale?
createDate
createBy
modDate
modBy

Integer

2,8 Integer

FK Integer

FK Integer

FK |employerFormid Intager
createDale DateTime
createBy ‘Varchar(15)
modDate DatsTime
madBy Varchar(15)

isCumrentTerm |Char(1)
createDate DateTime =
createBy Varchar(15)
'modCate DateTime:
modBy Varchar(15)
Context

PK |studentQuestionAnswerld [Integer
FK [formQuestionid Integer answer Clob
FK |evaluationid Integer comment Clob
answer Clob < DateTime
camment Clob createBy Varchar(15)
createDate DatsTime modCrate DataTime
createBy Varchar(15) modBy ‘Varchar(15)
modDate DateTime
modBy Varchar(15)
PK [evaluationid Intager
placementid Integer
FK | studentFormid Integer
FK |smploysrFormid Intager
FK |studentEvaluationStatusid [Integer H
FK |emplayerEvaluationStatusid (Integer
smdemLastUpdatedDare | DateTime
employerLastUpdatedDate | DateTime
studemuiz archar(54) =
PK | evaluationapprovalid Integer
FK - |employeruserD Ireege H evalualorlIn Sting
‘evaluationApprow:
astName Varchar(64) FK i alStatusid | intager
chvisort. FK |evaluationid Integer
studemEmall Varchar(64) approvedBy Varchar(s4)
FK |departmentid Integer o Incal DatTime
obTide Varchar(54) B createDate DateTime
FK [termid Integer
create)
gradYear Varchar(64) m,: m
‘companyLocation clob
H i H d d
studentLasthName ‘Varchar(64)
advisorEmall 'Varchar(64)
studentDCE) {H PK [evaluationStatusid |Intager
avisorDCE archar(4) name archar(64)
createDute DateTime createDate DateTime
createBy Varchar(15) H————— — createBy Varchar(15)
raodDate DateTime modDate DateTime
modBy Varchar(15) modBy Varchar(15)
Department EmployerUser EmallLogEvent

These tables are concerned with functionality surrounding forms, form questions, and form
answers. Forms are associated to departments using the DepartmentTermForm, which is

11

https://www.lucidchart.com/documents/edit/3db80d90-cff9-4c29-bc50-e4e15f178ae6/0?callback=close&v=8760&s=632

related to the Department table in Figure 2. This part of the data design is also concerned with
evaluations, and the status of an evaluation. Evaluations are associated to the employer that
completed an evaluation through the EmployerUser table in Figure 2.

Element Catalog

LikertScale

Contains Likert scales that are associated with the Likert and Double Likert questions in a
question group. This table is required, as different Likert questions may have different scales
associated with them (e.g. 5=Extensive, 3=Moderate, 1=Minimal and 5=Excellent, 3=Average,
1=Poor). Each Likert Scale question group will have one scale associated with it, and each
Double Likert question group will have up to two scales associated with it.

Question

Contains questions that are asked on forms, including the question text, and a reference to
which category the question falls under. The questionType field is a reference to a Java enum
that will contain all the possible question types (e.g. Likert).

QuestionType
An enum that represents all of the possible question types (e.g. Numeric).

QuestionCategory
Contains the question categories that can be asked on forms, including the name of the
category (e.g. Ethics).

QuestionGroup

A QuestionGroup associates a number of questions with each other. Each QuestionGroup
has a short name, and a content field (which is what is actually displayed on a form). The
header1 and header2 fields are optional, as they are only used with Likert and DoubleLikert
questions.

FormQuestion

Contains the questions to be asked on a form. Each FormQuestion has a reference to a
Question via questionld, and a reference to the Form it belongs to via formld. Additionally,
each FormQuestion has a questionOrder field which contains an integer which specifies what
the ordering of the questions, and the overarching category that the FormQuestion is
connected to via categoryld. Each FormQuestion also has a questionGroup, which is used to
group a set of questions on a form; this field contains the text displayed above a group of
questions.

StudentQuestionAnswer
Contains student answers to questions on forms, including a reference to the Question and
FormQuestion it answers, and the Evaluation it is an answer for.

EmployerQuestionAnswer

12

Contains employer answers to questions on forms, including a reference to the Question and
FormQuestion it answers, and the Evaluation it is an answer for.

Form
Contains forms to be completed by students or employers, including the college name.

DepartmentTermForm
Associates specific forms to the department they are used by and the term are being used for.

Term
Contains RIT semester terms, including the term code (e.g. 2141).

Evaluation

Contains references to the student form, employer form, student form status, employer form
status, and the times the student and employer last updated the evaluation. Also contains an
evaluation ID, placement ID, student UID, employer contact ID, and other related information.
An Evaluation is associated with one or many EmailLogEvent objects, as these keep track of
when notification, confirmation, and other related emails are sent out to the associated
student and employer.

EvaluationStatus
Contains possible evaluation statuses, including the status name (e.g. Saved).

EvaluationApproval
Contains references to the evaluations and connects that evaluation to a specific evaluator.
This table also connects that evaluation to a specific evaluation approval status.

EvaluationApprovalStatus
Contains possible evaluation approval statuses, including the status name.

4 Component Design

4.1 Reporting Service

ITS will be able to create a view of the system’s database, which can be used by an external
reporting tool to generate dynamic reports. Our system will use Active Query Builder to create
simple table reports that can be viewed within the system.

13

ReportService

Report

term: int
college: String
department: String

lastName: string

executeReport(String): Table

4.2 Authentication Service
Using Shibboleth and the system’s EmployerUser table, this service will identify if a user is

within the system and, if so, log them in. At the same time, it will also identify what the user’s
privileges are and act accordingly (e.g. if the user is a student, administrative content will not
be displayed).

currentYear: int
coopNum: int

gender: char
companyName: String

showComments: Boolean

studentReport(): Table

employerReport(): Table

AuthenticationService CoreSecurityFilter
ignOnUtl OnU
+authenticate({response, route) : boolean .
+authenticateEmployer(}): boolean inil{FilterCaniig config)
+logout{session, request): boolean +doFilter{ req, res, chain)

ShibbolethSecurityFilter

Database

Hhit{FilterConfig config)
+doFilter(req, res, chain)

!

SingleSignOnUtil

+isUserLoggedin(request): boclean
+performSingleSignOn(reques): boolean

On(recuest): boolean

+per
+performTestUserSignOn(request): boolean

Shibboleth
Authrentication

“+getUserTyp ntType):
UserType
User CoopEval
+ firstName: String
+ lastName: Strin — §
+ uid: String ’ -ApplicationUtil{)
+ userName; userName -determineAccountType():Enum
+ accountType: Enum +getintance(): ApplicationUtil
+ affiliations: ArrayList<String=> +getBaseURL():String
+ privilages; Privilages +getAuthUser(shib info, account info):User
' +createUser(): User
+getUnAuthUser(): User

+User(y

getters and setters

!

Privileges

accountType: Enum

+editUserPrivilages(): Boolean
. A ey

+emailTe

P):

14

https://www.lucidchart.com/documents/edit/fa846157-3876-4211-875e-65f2f4254644/0?callback=close&v=1087&s=612
https://www.lucidchart.com/documents/edit/645b27e4-c1e4-4068-96c1-38d10d3cc150/0?callback=close&v=2952&s=612

4.2.1 User

Our system will take information given to us by Shibboleth or our employer authentication
system and create a specific User object that can be accessed by the entire system. The
system will use this information to specify an enumeration to that user, which will define what
that user’s privileges are. This User object is stored in the session.

4.2.2 Privileges

As stated above, our system will use an enum to associate each user type to each individual
user. This enum will define the user type; for example, “1” could represent an employer, “2”
could represent an administrator of the system, and so on. The User object contains a
Privileges class, which returns true or throw an unauthorized error for user-specific privileges
that are dependent on the user type (or enum).

4.2.3 AuthenticationService

The AuthenticationService contains endpoints that perform login for shib or employers. The
login methods do nothing themselves but are a way for the Filters to check for the specific
login URI's and perform the login functionality.

4.2.4 CoreSecurityFilter

The CoreSecurityFilter is hit on every request to any html or controller endpoint. If the request
is attempting to hit AuthenticationService’s employer login endpoint the filter will call
SingleSignOnUtils method for logging in employer users. It also makes sure the request isn’t
whitelisted. For any other request the session is checked to see if the a the user has been
authenticated. If the user has been authenticated then the filter lets the request go through, if
the user is not authenticated an unauthorized error is send back.

4.2.5 ShibbolethSecurityFilter

The ShibbolethSecurityFilter is only called when the shibboleth login endpoint is called in
AuthenticationService. This filter takes in the shibboleth header information and verifies that
the User has access to the system.

4.2.5 SingleSignOnUtil

This class is in charge of either taken in the Shib header information and turning it into user
that is stored in session or taking the login credentials of an Employer and authenticating the
user. The SingleSignOnUtil uses the department and admin user tables to verify whether a
shib user has access to the system and also uses the employer table to check if the
employer's login credentials are correct. The SingleSignOnUtil can also check if someone is
logged into the system by checking if a user is stored in session. SingleSignOnUtil is also in
charge of figuring out which UserType enum to assign a specific user.

15

4.2.6 Shibboleth

<<abstract>> <<abstract>>
AbstractSecurityFilter ShibSignOnHandler

ShibProperties

ShibFields

% Shibutil

ShibHeader

ShibbloethSecurity Filter SingleSignOnHandler | SingleSignOnuUtil

Schedule % User

Subsystem

4.3 Form Service

FormSenvice

+getStudentForms(json)
+getEmployerFarms{json)
+getAllQuestionCategories(}
+getAliQuestionTypes()
+getForm{name)
+assignForm(json) FormVi el
+createForm(json)
+deleteForm{json)
+getEmptyFormQuestionGroup()
+gatEmptyFamQuestion)
+addFormQuestionGroup{json)
+addFormQuestion{json)
+deleteFormQuaestion(json)
-+deleteFormQuestionGroup{json)
+saveForm{json)

Save

QuestionGroupRepository FormRepository QuestionTypeRepository

TermRepository DepartmentTermRepository

QuestionRepository LikertScaleRepository
DepartmentRepasitory

QuestionTypeRepository QuestionCategoryRepository

https://www.lucidchart.com/documents/edit/4a3029f9-93bc-4f89-9801-5e69c2aa6985/0?callback=close&v=2695&s=612
https://www.lucidchart.com/documents/edit/d6ef7c57-a394-447b-817b-8f58eea0f629/0?callback=close&v=3390&s=612

4.3.1 FormService

This controller is in charge of taking in requests for actions related to FormService. The two
major components of FormService are editing forms and assigning forms to a department. For
form editing the approach that was taken that instead of persisting every time a change was
made the methods actually alter the formViewModel that is stored in the session. Once the
save is called the formViewModel is compared with the form in the database in order to use
the repositories to persist the necessary changes.

4.4 Email Service

The Email Service will be in charge of sending emails and editing email templates. These
emails will be sent out automatically, but can be manually overridden.

4.4.1 Email Logging Service

The Email Logging Service will be in charge of logging events within the system’s database.
Events, such as emails being sent out, will be logged. These logged events will be kept within
a text file.

4.4.2 Email Template Service

EmailTemplateService EmailTemplate

-templateType: String
-department: String
-formAddress: String
+load() -fromName: String
+update() -body: String
-signature: String

[
v \’

UpdateEmailTemplate LoadEmailTemplate

emailTemplate : Template emailTemplate : Template

+loadTemplate(Type String,

+update Template(emailTemplate) Department String):
Boolean EmailTemplate

| J

The Email Template Service is the controller for all actions associated with email templates.
The Email Template Service is in charge of updating the view and delegating commands from
the view. The Email Template Service will be called by the view directly. The EmailTemplate
class is used to contain all the information related to an email template row in the database.
UpdateEmailTemplate is the class responsible for updating a specified template within the
database. Lastly, LoadEmailTemplate will find a specific email template from the database
and send its associated information to the Email Template Service.

17

https://www.lucidchart.com/documents/edit/91240ea3-2b62-4d8d-935f-2f69386ab48b/0?callback=close&v=2505&s=397

4.5 User Management Service

The User Management Service is in charge of giving or removing administrative and
department access to specific users. This will be done by storing the user’s UID into the
admin or department table within the system. The User Management Service will be
responsible for creating the User object with the information from the client.

User

UserService

addUser(json)
removeUser(json)
getAllusers(json)

|

\

A

\A

!

AdministrationUserRepository

DepartmentUserRepository

DepartmentRepository

DepartmentUserJoinRepository

4.6 Evaluation Service

The Evaluation Service will be responsible for handling all evaluations that are being tracked
by the system. An evaluation is either completed or approved. For this service, we will be
making use of the command pattern.

18

https://www.lucidchart.com/documents/edit/40f5fa70-5cb4-4a21-a30d-ad42ee92df0e/0?callback=close&v=2384&s=612

Studertoven,

SaveEvaluation SubmitEvaiation UpdateEvaiationAnsiers AddEvaluaiion UpdateEvalu

+execute[Evaluation) Sexmeute (Evaleation) +execule(Eualuation) || sexecute {Evaiation " +execule(Fualuation) sexecule(Fvaluation)
wtory

EvaluatianRepasitory Evaliation StalusReposaory

Employer tudent
Aeze Repastony

4.6.1 EvaluationCommand

This class contains an execute method, which handles an Evaluation object and passes it to a
designated class that knows what to do with it.

4.6.2 AddEvaluation

A “receiver” class, which handles adding an Evaluation to the system by persisting it to the
database.

4.6.3 UpdateEvaluationAnswers

A “receiver” class, which handles updating question answers in the system by persisting it to
the database.

4.6.4 UpdateEvaluationStatusSaved

A “receiver” class, which handles updating an Evaluation object’s status to saved in the
system by persisting the changes to the database.

4.6.5 UpdateEvaluationStatusSubmitted

A “receiver” class, which handles updating an Evaluation object’s status to submitted in the
system by persisting the changes to the database.

4.7 File Import Service

This service handles importing the file given to us from Jim’s system, and will be used to
populate data into our system. If a new user has registered for a co-op and is passed into our
system, this service will handle creating an Evaluation object and associating it with that user.

19

https://www.lucidchart.com/documents/edit/924ead30-bac2-4d65-924a-0f37f375689b/0?callback=close&v=2212&s=436

File Import Service

+import(File)

ImportHandler

+Handlelmport(String)

|

ImportEvalutation ImportEmployer

+Handlelmport(String) +Handlelmport(String)

4.8 College Service

The College Service handles all logic dealing with Colleges and Departments. This logic
includes deletion, addition, and simple retrieving of colleges and departments. The data is
retrieved from the database using the repositories shown in the diagram below.

CollegeService

Department College
P addDepartment(json) 9

removeDepartment(json)
addCollege(json)
removeCollege(json)

b v b J

CollegeRepository DepartmentRepository DepartmentUserJoinRepository EvaluationRepository

https://www.lucidchart.com/documents/edit/5b546717-50a2-436c-981f-91ff8a1e7773/0?callback=close&v=420&s=400
https://www.lucidchart.com/documents/edit/87712bc7-b17d-4d80-a243-6f7af4e07b6d/0?callback=close&v=2403&s=612

4.9 Search Service
The Search Service will be responsible for handling all evaluation searches.

SearchService SearchCriteriaViewModel

+getSearchResults(SearchCriteriaViewModel)
+getSearchCriteria()

% SearchResultsViewModel

Search

+searchEvaluations(SearchCriteriaViewModel)

EvaluationRepository

4.9.1 Search

This class takes in a SearchCriteriaViewModel and parses that viewmodel into the necessary
values to query the database. This class then will return all the Evaluations that match the
criteria results.

4.10 Repositories

Repositories are used to access data from the database. The repository’s name will indicate
which table it is accessing.

5 Human Interface Design

5.1 Overview of User Interface

One of the major pain points of the current system is its poor usability, and we aimed to
remedy that while designing the user interface of the new system. Although we referenced the
RIT Web Standards document for colors, fonts, and other guidelines we are expected to work
within, we used this document minimally since it was last updated in 2011. In order to design
to fit where RIT’s web styles are currently headed, we used newer websites within the RIT
domain or websites that had recently been updated as our primary inspiration for the new

21

https://www.lucidchart.com/documents/edit/abda7a1e-3cf1-4fba-9ab9-d6c3450b90a6/0?callback=close&v=783&s=612

user interface. The OCSCE website was the biggest influence, as it has recently been
updated, and the Co-op Evaluation System is a part of their suite of applications. We wanted
to make sure it fit in and used similar navigation formats. Other websites used as inspiration
include PawPrints, a new website built by RIT Student Government, and the website for the
RIT Honors Program, which has been given a new user interface within the last year.

5.2 Screen Images and Interactions
All our wireframes were created in Lucidchart and are available on our website or here.

We chose not to include them directly in this document in order to keep it from becoming too
long, and to minimize loading time in the live Google Drive version.

6 References

[1] A. Shvets, G. Frey, and M. Pavlova. SourceMaking. [Online]. Available:
http://sourcemaking.com

[2] E. Gamma , R. Heml, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed. Indianapolis, Indiana: Addison-Wesley
Professional, 2002.

[3] RIT Web Standards, Rochester Institute of Technology, Rochester, NY, 2011.

7 Appendices

Appendix A: Glossary

Term Definition

ITS Information and Technology Services

OCSCE Office of Career Services and Cooperative Education
RIT Rochester Institute of Technology

Appendix B: Issues List

The team is using Trello to track issues; however, below you will find a high-level list of
outstanding issues with this document. If finer detail is required, please reference the team
Trello board, activity tracker, and/or Google Drive.

Number Priority Description

22

https://www.lucidchart.com/invitations/accept/c10d5da2-a962-4739-9ee7-1c8b55e49ac3
http://sourcemaking.com/

