Project Plan

Co-op Evaluation System
Senior Project 2014-2015

Team Members:

Tyler Geery
Maddison Hickson
Casey Klimkowsky

Emma Nelson

Faculty Coach:

Samuel Malachowsky

Project Sponsors:

Jim Bondi (OCECS)
Kim Sowers (ITS)

Table of Contents

Revision History
1 Introduction
1.1 Overview
1.2 Deliverables
1.3 Assumptions and Constraints
1.4 Definitions and Acronyms
1.5 Reference Material
Management Structure
2.1 Project Lifecycle
2.2 Project Organization
2.2.1 Roles and Responsibilities
2.2.2 Relationships to External Organizations
2.3 Risk and Asset Management
Planning and Control
3.1 Estimate
3.2 Resource Identification
3.2.1 Time
3.2.2 Cost
3.2.3 Materials
3.3 Resource Allocation
3.3.1 Schedule
3.3.2 Team Members
3.4 Tracking and Control
3.5 Metrics Tracking
Technical Process
41 Technology
4.1.1 Environment
4.1.2 Methods. Tools, and Techniques
4.2 Infrastructure
4.3 Project Artifacts
Supporting Plans
51 Configuration Management

5.2 Testing

5.3 Deployment
Maintenance

N

[SV]

[

[&)]

(@}
N

Revision History

Version | Primary Author(s) Description of Version Date Completed
Emma Nelson,
v1.0 Maddison Hickson, | | b o vision September 14, 2014
Casey Klimkowsky,
Tyler Geery
Update after the Requirements
v1.1 Emma Nelson phase, inclusion of the metrics October 12, 2014
description (3.5)
v1.2 Emma Nelson Update after Architecture phase | November 5, 2014
v1.3 Emma Nelson Update at the end of Fall December 10, 2014
Semester
vl4 Emma Nelson Update to.roles, metrics, and January 8, 2015
technologies
Update to deliverables,
assumptions, project lifecycle,
v1.5 Emma Nelson project organlza.tlon, schgdule, February 5, 2015
resource allocation, tracking and
control, metrics, technology, and
supporting plans
V1.6 Emma Nelson Final updates at the end of the May 14, 2015

project

1 Introduction

1.1 Overview

The purpose of this project is to re-engineer the Co-op Evaluation System in order to leverage
newer web technologies while also improving performance and user interaction. The current
system uses outdated, under-documented technology, which makes it difficult to maintain.
Furthermore, the random errors that occur do not give users confidence that their information
was submitted properly. Significant improvements to the user interface will need to be made,
but the existing database structures can be used as a reference for modifications.

One of our primary goals is that by the conclusion of this project, we will, at a minimum, have
supplied OCECS and ITS with a product that is functionally equivalent to the existing system.
Time permitting, we hope to implement several new features, as defined by our project
sponsors, as well. We plan to design and implement the system with extensibility in mind, so
that in the future, other developers may implement additional features that we were unable to
implement during the duration of this project.

1.2 Deliverables

In addition to this document, the following deliverables will be completed by the conclusion of
this project. Some of these documents are required by the project sponsors, while others are
required for the Software Engineering department.

Deliverable Description

Project Website Holds all non-proprietary work products and projects artifacts

Documents the time worked by each team member on any
given high-level task as well as the aggregation of time spent
by the team as a whole

Activity Tracking
Spreadsheet

Describes the system to be developed and outlines all
Software Requirements functional and non-functional requirements. This deliverable
Specification also includes our user workflows that played into developing
the final set of requirements in a user-centric way

Architecture Document Outlines the high-level architecture of the project

Details the software design at a subsystem and services level.
Design Document This deliverable also includes mockups of the system in the
form of static images and clickables

Details the testing strategy used by the development team

Test Plan including, but not limited to, unit testing, usability testing, and

beta testing approaches. This deliverable also includes the
correlating test scripts and materials

Two presentations will be delivered: the first describes our
Project Presentations interim status in December 2014, and the second concludes
the project in May 2015

Presents a description of the project, the technologies used,
Project Poster and other relevant project information in the graphical and
textual form of a poster

Outlines the basic requirements of the system, development
Technical Report process, state of the system at time of delivery, and other
similar high-level descriptions

Provides ITS with the information they need to continue
Hand-off Support supporting the final delivered product; No formal
Documentation documentation, information transferred via code review and
artifact hand-off

Describes the functionality of the system, and describes to

User Manual users how to use the system; Part of the product

All software written for this project, including tests and build

Software Product ;
scripts

1.3 Assumptions and Constraints

The development team will work with ITS Application Development and Operations staff as
needed to deliver a solution that meets the technology standards of ITS and can be supported
by ITS staff once the application has been deployed to production.

Our biggest constraint is the set of application technologies that are supported by ITS. At a
minimum, we are limited to using Java to implement our backend, and it is recommended to
us by ITS to use AngularJS for our frontend. Furthermore, if we choose to implement our own
database instead of using the pre-existing structures, we will be limited to using Oracle SQL
Developer. We understand that we are allowed to pursue technologies that are not on the list
of application technologies supported by ITS, but will have to present these technologies and
have them approved by ITS before we are able to use them for this project.

1.4 Definitions and Acronyms

EWA Enterprise Web Applications, a division of ITS

IDE Integrated development environment

ITS Information and Technology Services

OCECS Office of Cooperative Education and Career Services
RIT Rochester Institute of Technology

1.5 Reference Material
We were given the following materials prior to starting the project:

Reference Description

Created by the ITS team and contains
ITS wiki page sample applications as well as guidelines by
which we must abide

Content on the CD includes documentation
CD from Jim Bondi and code created by previous Senior Project
teams

Description of the project given to us by the
Project description Software Engineering department, and
written by Kim Sowers

2 Management Structure

2.1 Project Lifecycle

For this project, we will be following the evolutionary delivery lifecycle. Evolutionary delivery is
a lifecycle model that straddles the ground between evolutionary prototyping and staged
delivery. In this sense, we will develop a version of our product, show it to the project
sponsors, and refine the product based on sponsor feedback. Although we would like to
accommodate as many customer requests as possible, our accommodation of these requests
will based on project schedule and technical feasibility. If we manage to accommodate most
requests, our project lifecycle will look a lot like evolutionary prototyping. If we only manage to
accommodate a few change requests, our project lifecycle will more like staged delivery.

In evolutionary delivery, our initial emphasis is on the core of the system, which consists of
lower level system functions that are unlikely to be changed by customer feedback.

One significant customization we will be making to the evolutionary delivery lifecycle is our
risk management. At the beginning of each “Develop a Version” stage, we will place a heavy
emphasis on risk management. Refer to 2.3 for a more detailed description of how we intend
to manage risk for the duration of this project.

Software
Concept

Preliminary
Requirements
Analysis
Design of De\l}ver_Fmal
Architecture and ersion
System Core
Develop a
/‘ Version \
Incorporate)
Customer D\E;;‘::ifot:e
Feedback
k Elicit Customer ./
Feedback

In our process model, “Develop a Version” will include various sub-steps as detailed in the list
below:

Identify goals, tasks, and features for the cycle

Analyze the risks involved and re-evaluate Top 10 Risks table
Estimate the time for each goal, task, or feature

Update the schedule and project plan to reflect the plan for the cycle
Develop the necessary artifacts, functionality, etc.

Test any code and user interaction created

o0 k0N~

For “Deliver the Version”, we will deliver the functionality for the milestones set and demo
them during our sponsor meeting that week. The completed functionality will also be deployed
to our DEV server by that meeting and to TEST shortly afterwards to be available for
acceptance testing.

https://www.lucidchart.com/documents/edit/7f7790a1-6d5e-4a6f-8a61-372cf2b23f27/0?callback=close&v=725&s=612

As a part of “Incorporate Customer Feedback”, the development team will complete an
informal post-mortem for the cycle in order to analyze what went well, what went poorly, and
where we can improve. This is an important point in that it will allow us to better plan the next
cycle and reduce the risk of an error reoccuring.

2.2 Project Organization

2.2.1 Roles and Responsibilities

In addition to the team roles we have assigned below, we have agreed that there will be a
certain amount of overlap between the roles. We made this decision as a part of our risk
mitigation plan to ensure that all of our tasks are completed on-time.

Name Role Responsibility

Coordinates overall team process and is
Emma Nelson Team Coordinator the person responsible for all project
documentation

Maintains the project website
Webmaster proj
Maddison Hickson Tracks development progress and is
Development . .
: point person for keeping feature
Coordinator
development on schedule

Serves as a communication point
between the development team and

Communications project sponsors

Casey Klimkowsky Coordinator

Records meeting minutes during all
meetings, including any major team
decisions and action items

Track testing progress and ensures any

Tyler Geery Testing Coordinator gaps are addressed

Anu Sharma Contractor Development and testing support

2.2.2 Relationships to External Organizations

We will work closely with the ITS Application Development and Operations staff to determine
approved technologies for the project. Furthermore, at the conclusion of the project, we will
perform a formal handoff of the finished product to the ITS Support staff.

OCECS is the other organization that we will be working with for the duration of the project.
The requirements for the final system will be given to us by OCECS, as the goal of this project
is to replace their existing Co-op Evaluation System.

2.3 Risk and Asset Management

We are maintaining a list of all risks we believe could be a problem throughout the lifecycle of
the project. This document serves as a living list of possible risks for the remainder of the
project. We actively manage a separate risk table of the top 10 risks that are of the biggest
concern to us at the current stage of the project. These top risks will be revisited every week.

Refer to Risk Table for a formal collection of risks that will be actively managed for the
duration of this project, and the first indicator and mitigation approach for each.

3 Planning and Control

3.1 Estimate

Estimation will be continually refined at the start of each stage in the process. Before starting
the development work of each stage the team will take time to establish what they want to
accomplish in the given stage and estimate the time each task will take, thus the exact
schedule will not be fully complete until near the end of the project. At a higher level, the team
has developed some rough estimates for major milestones as listed below.

Milestone Estimated Date of Completion | Refinement process
3 weeks after reviewing the The team will analyze what work
Requirements current documents has been done and the quality of
9 the work, then re-estimate based
October 6, 2014 on their conclusions.

3 weeks after completing the

. The team will analyze what work
requirements

has to be done, then re-estimate
based on their conclusions.

Architectural design
October 30, 2014

The team will analyze what work
has to be done, then re-estimate
based on their conclusions. At
that time, the team will determine
the best way to accomplish the
work and set a reasonable
deadline.

3.5 weeks after completing the
architectural design

Detailed design November 25, 2014, with more
wireframes coming as they are
completed

Implementation

_ Last 2 weeks of Fall Semester It's a hard deadline, so no
Cycle 1:

. plus Intersession (half time) refinement is required.
Environment L . :
Configuration and Re-estimation will happen if the

January 25, 2015 deadline is slipped.

Student Dashboard

Implementation
Cycle 2: Student
Role

3 weeks after C1 ends.

February 17, 2015

It's a hard deadline, so no
refinement is required.
Re-estimation will happen if the
deadline is slipped.

Implementation
Cycle 3: Employer
Role

3 weeks after C2 ends.

March 10, 2015

It's a hard deadline, so no
refinement is required.
Re-estimation will happen if the
deadline is slipped.

Implementation
Cycle 4: Admin Role
Part 1 and Evaluator
Role

3 weeks after C3 ends, not

including Spring Break Week.

April 7, 2015

It's a hard deadline, so no
refinement is required.
Re-estimation will happen if the
deadline is slipped.

Implementation
Cycle 5: Admin Role

3 weeks after C4 ends.

It's a hard deadline, so no
refinement is required.
Re-estimation will happen if the

only bug fixes)

Part 2 April 28, 2015 deadline is slipped.
Code Freeze It's a hard deadline, so no
(No new features, April 28, 2015 refinement is required.

Re-estimation will happen if the
deadline is slipped.

Implementation
Cycle 6: Finalization
and Documentation

3 weeks after C5 ends.

May 21, 2015

It's a hard deadline, so no
refinement is required. The team
will re-estimate once ITS has
provided their expectations for
the follow-up documentation.

3.2 Resource ldentification

3.2.1 Time

The available calendar time for the project is the length of two academic semesters, a total of
33 weeks, non-inclusive of institute breaks. A limited amount of time will be spent by the
development team during the intersession break in order to avoid “summer syndrome”, or

forget where we were at before the fall semester ended.

3.2.2 Cost

If we find technological tools that require the purchase of a license, and these tools fit our
needs better than alternative non-paid options, we may approach the project sponsor to
request funding for these technological tools. However, at this time we do not know what the

exact monetary cost may be, or if there will be any at all.

3.2.3 Materials

ITS has provided us with a page of EWA Student Development Guidelines on the RIT Wiki.
This wiki provides us with expected standards for technology, documentation, and user
interface design. The wiki also contains sample applications, which will assist us in the
construction of the skeleton for our application.

Jim Bondi has provided us with a CD, which includes documentation and code created by
previous Senior Project teams. We will use this content as a basis for the planning of our
project documentation.

3.3 Resource Allocation

3.3.1 Schedule

Refer to the Schedule section on the team’s website for a detailed schedule for the project,
which will be updated as needed.

3.3.2 Team Members

A contractor has been add to this project at twenty hours a week to help with the development
of the actual software. She will be in charge of developing features and corresponding tests
and is responsible for following the process as set up by the original team and meeting all
standards for code style, commit messages, etc. like any other member of the team.

3.4 Tracking and Control
Our schedule for the project will be tracked and controlled throughout the project using a table
on our website, as mentioned above in 3.3.1.

We will be using Trello to track high-level process tasks and in-depth development tasks
throughout the different phases of the project. In addition, we will be using a Google Drive
spreadsheet to track the current state of high-level tasks. The spreadsheet provides
information such as who is assigned to each task, the estimated amount of time it will take to
complete each task, the actual time it took to complete each task, and any additional
comments.

In addition to Trello, we will be using Slack as a communication tool. We will receive
notifications on Slack from several sources, including Trello, Google Drive, and GitHub. This
provides us with a one-stop-shop for updates to project resources as well as a location for
contextualized conversations.

Finally, we are using GitHub Issues to track development tasks. These tasks will be included
in Trello at the feature level, so we can easily see which part of the system are being
developed at any given time; however, all detail on who exactly is doing what within a given
feature set and where they are will be found on GitHub. This method of tracking provides ITS
with the full history of our development process in a format that won’t disappear with us when
we graduate.

10

The expectations of functionality and quality, and other non-functional requirements, of the
software product will be defined in the software requirements document. We will moderate our
adherence to these standards predominantly through the use of Trello, as we intend to go
more in-depth with Trello and GitHub Issues than our Google Drive spreadsheet.

3.5 Metrics Tracking
The development team is tracking three metrics to aid in measuring the quality of the project:
requirements volatility (churn), usability, and backlog management index.

Tracking requirements volatility will give the development team insight into how much the
requirements change over time, starting from the time of completion of the initial version of the
requirement documents. This is particularly important when it comes to recognizing when,
how often, and how many requirements were added or dramatically changed.

Usability will be measured through a variety of ways during usability testing after the
completion of the initial clickable mockups. Measures may include completion rate, task time,
error count, and/or number of clicks. After each usability test, the subject will complete a form
of Likert questions. Their responses will be tallied up with those of other testers to create a
SUS score for the product and possibly for each individual user role of the product. This score
will act as the core metric on usability.

The backlog management index is the number of bugs introduced (reported) compared to the
number of bugs resolved. This metric will be actively tracked starting at the beginning of the
development phase.

Finally, multiple metrics on effort of the team are being tracked in the Activity Tracker on the
time tracking tabs for each semester. These metrics include total hours per person, average
weekly hours per person, total hours by the team, and average weekly hours by the team.
The percent completion of estimated time, estimated time, and actual time is also available on
the task tracking tabs for each semester.

4 Technical Process

4.1 Technology

4.1.1 Environment

Java will be used as our main programming language with JavaScript on the client side. For
Java development, we will be using IntelliJ as our IDE. For client-side development, we will
use Intellid or Sublime Text.

4.1.2 Methods, Tools, and Techniques

We will be using Maven to help automate our software build. The source code for our
application must be written in Java, and will follow an Web Services paradigm through the use
of Spring Boot. AngularJS will be used on the client side, and will be used to help implement

11

the MVC pattern in our application. We will also be utilizing Sass as a substitute for straight
CSS in order to simplify the development of our stylesheets. We will be using Twitter
Bootstrap as well to help us to implement a responsive user interface.

4.2 Infrastructure

ITS will provide us with a GitHub repository. It will hold all of our source code for and will
serve as our version controlled repository.

ITS will also provide us with a Tomcat development server, which will serve as our runtime
environment. Our application build will run in our own development environment.

We must build our application with the assumption that it will be deployed in a DEV, TEST,
and PROD instance. Any values that are environment specific must be stored outside of the
application code.

For a relational database, ITS will provide us with access to existing Oracle databases. We
may or may not reuse the existing database structures. If we choose to implement our own
data structure, we will be using Oracle SQL developer.

4.3 Project Artifacts
The project artifacts that we plan to deliver are listed in 1.2. All of these documents will be
available on the project team’s website once they are completed.

5 Supporting Plans

This section will be completed over the course of the project, if and when, we define and write
the respective documents.

5.1 Configuration Management
Information concerning Configuration Management can be found on the GitHub wiki for the
Co-op Evaluation project.

5.2 Testing

This document can be found on the team website along with all the related materials for
specific types of testing. All automated tests are included in our GitHub repository.

5.3 Deployment

There is no formal deployment documentation as our deployment process follows the process
defined by ITS on our wiki page and during work sessions.

5.4 Maintenance

Notes regarding maintenance and current state can be found in our Trello board, GitHub
Issues, and Technical Report. Any further documentation concerning maintenance and future
development will be completed by another senior project team or ITS, whomever is set to
complete the project.

12

