Fire

by Dragonsoft
Distributed Compile & Testing Component

[image: image2.png]‘®2 DragonSoft
‘. ... new ideas. new software.

Table of Contents
31.
Description

31.1.
At least once

31.2.
Resubmissions

31.3.
Auto-Discovery

31.4.
Extensible tests

31.5.
Test units

31.6.
Results observer

41.7.
Batch tests

41.8.
Batch test units

41.9.
Leak prevention

42.
Deploying clients

42.1.
Configure a new instance

52.2.
Compile

52.3.
Start listening

63.
Reserved files

64.
Functional Components

64.1.
Client / Serve communication

64.1.1.
Submission cache

74.1.2.
Timeout monitor

74.2.
Messages

1. Description

This component will queue student’s submissions as they arrive. The submissions are forwarded to the first available distributed client. This allows the server to transfer the burden of compiling and testing submissions to other machines on the same network.

1.1. At least once

Every submission is guaranteed to complete testing at least once. If a client fails to respond in a timely fashion, the entire test is queued to be sent to a different client for processing.

1.2. Resubmissions
A resubmit by a student will be queued on the server for execution only after any prior submissions by that student for the same activity have completed. Only the latest one resubmit will be stored in the queue.
Results from resubmitted activities will overwrite any previous submission results.
1.3. Auto-Discovery
This component was written using the MantaRay middleware system version 6.1 (http://www.mantamq.org/). MantaRay uses multicasting to discover clients, allowing new machines to be added (or removed) to collection of available clients for testing without requiring any changes to the server.
1.4. Extensible tests
Currently the system only supports tests which are a collection of commands and files to be executed under a UNIX sh terminal. However, the interface for a SubmissionTest has been extracted, allowing new types of tests to be added to the system with no changes or knowledge required of the distributed communication. Minor changes will be required to the business logic beans to support new test types.
1.5. Test units
Submissions may suffer a battery of tests. Each individual test in the battery is referred to as a test unit. Test units are all executed sequentially and on the same client. Results from each test unit are sent back to the server as they complete.

A required test unit will halt the execution of remaining units if it fails.
1.6. Results observer
Any number of objects may register as results observers. These objects will receive results from every individual test unit as the results arrive on the server.
1.7. Batch tests
A batch test is a collection of file pointers and script commands (to be executed under a UNIX sh terminal). When a client is ready to begin execution, the following happens in this order:

1. Each file in the submission is copied to the working directory. (Scripts any other programs needed for testing should be included in the environment’s path variable).

2. Any number of commands is executed (pre commands). Typically for any initialization required before testing can begin.

3. One or more units are executed sequentially. If a required test unit fails, all remaining units will not be executed.

4. Any number of commands is executed (post commands). Typically for any cleanup of the working directory required before the following step.

5. If no leak was detected (Section 1.9) all the contents of the working directory are saved with the submission (overwriting any previous submission).

1.8. Batch test units
A batch test unit must be contained within a batch test. They are executed as follows:

1. Any number of commands is executed (pre commands). Typically for initialization.

2. Any number of commands is executed (commands). Typically for the bulk of processing required.

3. One or more check pass commands are executed. Check pass commands use the return value to determine success (0 = pass, else fail). A test unit is only considered passed when every check pass command passes.

4. Any number of commands is executed depending on the status of the test. If passed, the pass post commands are executed; else the fail post commands are executed. Typically used for generating feedback for a student.

1.9. Leak prevention
Every submission test requires that both a timeout and a max working directory size are defined. These limits are periodically checked during execution, if they are ever exceeded, the test fails and remaining unit execution is halted.
2. Deploying clients
MantayRay must be configured individually for each instance that is deployed. They must be deployed on a UNIX machine.
Note that

Multiple instances may be deployed on a single machine as long as every instance is individually configured with a name that is unique to the entire network and a port that is not already in use by that machine.
2.1. Configure a new instance
Each instance must be uniquely named. There is no significance to this name other than for connection management internal to MantayRay, so feel free to name instances however you wish. From here on, replace all references of <InstanceName> with the name you selected.
Step 1:

Copy FireTester\Homes\Sample to FireTester\Homes\<InstanceName>
Step 2:

· Open FireTester\Homes\<InstanceName>\config\ component_config.params
· Update net.this.agent.name with your <InstanceName>
· Save & Close

Step 3:

· Open FireTester\Homes\<InstanceName>\world.xml
· Delete all but 1 agent tag if more exist.
· Modify the agent tag as shown below with your <InstanceName> and any port that is not already in use and may be opened to other computers on the network.
<agent name='InstanceName'>

<transport ip='0.0.0.0' port='6667' type='TCP' />

</agent>

· Save & Close

Step 4:

· Set the owner of FireTester\Homes\<InstanceName>\working_dir to the same user account which will run the client.

· Set permissions for FireTester\Homes\<InstanceName>\working_dir to 700 (drwx------).
2.2. Compile
Run FireTester\Homes\<InstanceName>\Scripts\Compile.sh
2.3. Start listening
Once the client has been launched, it will sit idle until the server forwards a test to be processed. The client will not listen for more tests until execution has completed, allowing them to be queued on the server or sent to another client instance for processing.
Note that

The code student’s submit will be executed from the same account that launched the client. Be sure to run the following script from an account with limited privileges to prevent malicious student code from reeking havoc.
The account should not have access to any file outside the working directory to prevent student tampering with the client.
Run FireTester\Homes\<InstanceName>\Scripts\RunClient.sh
3. Reserved files

*.fire: internal use only; any file with this extension may be overwritten and will be stripped from the submission results.
4. [image: image3.emf] :

Simulator

 :

Simulator

 :

ResultsObserver

 :

ResultsObserver

 : Server : Server : Client : Client :

SubmissionTest

 :

SubmissionTest

2: handle(Logical View::java::lang::Object)

5: handle(Logical View::java::lang::Object)

1: queueTest(SubmissionTest)

3: execute(ClientController)

4: send_acknowledge(AcknowledgeMessage)

6: receive_acknowledge(AcknowledgeMessage)

7: post_unit_results(TestUnitResults)

8: handle(Logical View::java::lang::Object)

9: receive_unit_results(TestUnitResults)

10: post_unit_results(TestUnitResults)

11: handle(Logical View::java::lang::Object)

12: receive_unit_results(TestUnitResults)

Client / Serve communication
Typical Client/Server Interaction Sequence Diagram
The figure above shows the typical client / server interaction. As you can see, each call is non-blocking (control is immediately returned to the calling object, allowing another thread to execute the request). This example shows a test with only two units, however there may be 1 or more. Alternatively, an exception such as timeout exceeded may be passed from the SubmissionTest to the ResultsObserver through very similar calls.
As submissions are queued, the server immediately forwards the request to a random client. The submission is then held in a queue on the client. While the submission sits in queue, the client will send keep-alive messages (every 30 seconds) to inform the server that the submission hasn’t been lost. If the server fails to receive this message in a timely fashion (about 1 minute) the submission is sent to another client for execution.
4.1. Submission cache

The submission cache allows submissions to be resent to a client for processing when necessary.

When submissions are forwarded to a client for processing, they are also cached on the server along with the time the client received the submission. As the client finishes individual test units, the results are forwarded back to the server before moving on to the next unit. When this occurs, the server updates the time for the test in cache and forwards results to registered observers.
Once the client completes testing the submission, the submission is removed from the cache.
4.2. Timeout monitor

In a separate thread, a never ending loop detects timeouts and queues tests to be sent again as necessary. This may occur mid-test, but since each client has its own working directory this will not have any adverse effects.
5. Messages
[image: image1.emf]MaxDirectorySizeExceededException

(from messages)

KeepAliveMessage

KeepAliveMessage()

get_submissions()

(from messages)

AcknowledgeMessage

AcknowledgeMessage()

get_submission()

(from messages)

TesterException

TesterException()

TesterException()

TesterException()

get_submission()

set_submission()

(from messages)

TestUnitResults

_passed : boolean

_complete : boolean

_next_unit_id : int

TestUnitResults()

get_submission()

passed()

complete()

getNextUnitID()

(from messages)

TimeoutExceededException

(from messages)

UnknownException

UnknownException()

(from messages)

Messages that may be sent to ResultsObservers
Any of the above messages may be sent to ResultsObservers as a submission test is executed.
Note that

A TesterException does not indicate that an exception was thrown by the student’s code. Instead it indicates a violation of the system’s control limits such as the max execution time.
Version 0.1
4.20.2005
Page 7 of 7

