Try Again – Project Plan
12/15/2004

Project Plan

Try again

Purpose: This document describes the approach Dragon Soft will use throughout the Try Again project.
Version 1.2
Last Revision: Wednesday, December 15, 2004

Table of Contents

3Table of Contents

3Revisions

31
Project Description

32
Deliverables

33
Project Assumptions and Potential Risks

33.1
Assumptions

33.2
Potential Risks

33.3
Risk Mitigation

33.3.1
Requirements volatility

33.3.2
Difficult Testing

33.3.3
Insecurity

33.3.4
Unfamiliar Tools

33.3.5
Implementation Complexity

33.3.6
Hardware

33.3.7
Parallel development of external interfaces

34
Language decision

35
Project Schedule

Error! Bookmark not defined.5.1
Tasks

Error! Bookmark not defined.5.2
Milestones

36
Quality Plan

36.1
Change Control

36.2
Configuration Management

36.3
Defect Tracking

37
Test Plan

37.1
Overview

37.2
Testing Schedule

38
Documentation Plan

38.1
Planned Documentation

38.1.1
Standard Documentation

38.1.2
Software Engineering Documentation

38.1.3
Test Documentation

38.1.4
Operation and Support Documentation

38.1.5
Maintenance Documentation

38.2
Schedule

Revisions
	Revision
	Date
	User
	Comment

	1.0
	12/9/04
	Shaun
	Template

	1.1
	12/14/04
	Nick M
	Compiled individual drafts

	1.2
	12/15/04
	Greg
	Inserted Quality Plan

1 Project Description

During the winter and spring quarters, DragonSoft will develop a replacement for the “try” automated assignment submission tool used by the RIT Computer Science department. The replacement tool we create will be a web-based application that runs on CS department servers.

The tool will enable students to submit assignments for grading via a web interface. Administrators via a separate web interface will specify the parameters for an assignment. Graders of assignments will have a third view of the system, in which they can monitor and assess the results of automated tests.

2 Deliverables

	Due Date
	Name
	Description

	12-26-04
	Project Plan
	This document

	1-8-04
	SRS
	Defines the system requirements

	1-8-04
	Design
	Describes the system design

	1-29-04
	Test Plan
	Defines the testing approach and requirements

	1-29-04
	M1
	The framework

	2-26-04
	M2
	Save and grade

	2-04
	Progress report
	Midpoint project presentation

	3-25-04
	M3
	Compile and test

	4-29-04
	M4
	Code complete

	5-27-04
	M5
	Gold

	5-04
	Project poster
	Product presentation poster for display

	5-04
	Final presentation
	Presentation after project completion

3 Project Assumptions and Potential Risks

3.1 Assumptions

The following are assumptions that DragonSoft has made, and are critical to the
execution of the project plan.

· RIT will provide adequate hardware to both host and test our system

· The XML files needed for our system will be available in accordance with our proposed timeline

· All of the major system features have been disclosed to us as of the writing of this document (12/12/04), and can be found in our initial SRS draft

3.2 Potential Risks

Table 1 shows risks that we have identified for this project. Along with each risk, we have listed the likelihood rank, which identifies (on a scale of 1 to 10) how probable the risk is to appear. We have also included an impact rank, which identifies (on a scale of 1 to 10) the severity the risk will have if it occurs. These two rankings are then added for a combined rank, which tells us which risks we will have to focus on the most.

	Description
	Likelihood Rank
	Impact Rank
	Combined Rank

	Requirements volatility – requirements are somewhat unspecific, features may be added or removed
	8
	5
	13

	Difficult Testing – the system will be difficult to realistically test, as a common load involves hundreds of students
	9
	4
	13

	Insecurity – many aspects of the system are security-critical
	9
	8
	17

	Unfamiliar Tools – not all of the team is familiar with application servers, MS Project
	10
	2
	12

	Implementation Complexity – some implementation issues will require further research: sandbox, pushlets, process launching / monitoring
	8
	5
	13

	Hardware – the team may not be able to obtain sufficient test/deployment hardware
	3
	7
	10

	Parallel development of external interfaces – our system will rely on XML files being implanted by others.
	6
	8
	14

Table 1 - Risks
3.3 Risk Mitigation

The following subsections describe how we plan to mitigate each risk listed in section 4.2.

3.3.1 Requirements volatility

The requirements of this project are very likely to change during development. This is a new implementation of an existing system, and new features may be added or removed for many reasons. To mitigate this problem, we are using a spiral development model. This model will allow us to rapidly develop prototypes of different parts of the system for the customer to examine and make changes to. Using a spiral model will also leverage us the ability to change direction several times over the development cycle, this is key if requirements change.

3.3.2 Difficult Testing

This system is distributed, and under normal use will have hundreds of users accessing it within a very small timeframe. In order to properly stress and performance test the system; we will have to simulate these conditions. To achieve this, we will have parallel development of a testing suite while the main system is being developed.

3.3.3 Insecurity

Since this system will be handling graded materials, and actually holding student grades, security is a large concern. Students must be limited to access only their own materials, results, and grades. Additionally,
files submitted for execution must be limited in their access to the host machine’s file system. In order to maintain a secure system, we plan to use the security protocols and techniques built into the enterprise application framework we choose to use. In addition, we will be using RIT’s user directory to authenticate users against. All executing code will execute within a “sandbox” environment, where it has no access to any files outside of its own folder. We will also be extensively testing in the area of security.

3.3.4 Unfamiliar Tools

We will be using Microsoft Project, Bugzilla, and an application server on this project. While some of us on the team have experience with some of these tools, we are all unfamiliar with at least one. In order to mitigate this risk, we have assigned a “tools expert” to each tool, who will become thoroughly versed in that tool’s operation early in the development process.

3.3.5 Implementation Complexity

Some aspects of the system are complex, or unfamiliar to us. The management of all of the files in the system was identified early on as being very complex. The “sandbox” feature, while known to be possible, remains somewhat a mystery to the team. In order to mitigate this risk, early research of “sandbox” techniques will be conducted. Additionally, a thorough design should help clarify how all of the files in the system will be organized.

3.3.6 Hardware

Since this is a large distributed system that will accommodate hundreds of users simultaneously, high performance hardware will be needed to host this system. In order to mitigate this risk, we have attempted to secure adequate hardware from the school early on.

3.3.7 Parallel development of external interfaces

We will be relying on external XML files in two parts of the system. We will need to use the XML file that contains all courses and the students who belong to them to determine what courses students have access to. We will also be using the assignment definition XML files to know what information to expect in each assignment. To mitigate this risk, we will try to secure these files early in the development process. If this is not possible, we are prepared to develop our own XML files.

4 Language decision
We have decided to implement the Try Again system using the J2EE enterprise application framework.

It was clear from the beginning that we needed this to be a web-based enterprise application. Since the student base will be accessing the system from a heterogeneous operating system base, we either needed a rich client solution or a web based solution. A rich client solution led to problems in the area of updating the software, as well as the issue of defining our own interface for the students to become familiar with. A web-based solution affords the ability to access the system from any machine, even if they haven’t installed any of our software. Additionally, any time they access the web page, they will be using the latest version of the software.

This left us with two major choices: J2EE or .NET. We chose to use J2EE because the major server and execution hardware is UNIX-based, and .NET can only run in a Windows environment. Even if we were to purchase adequate Windows hardware, if that hardware failed, there wouldn’t be backup hardware to re-deploy the system on. There is an additional concern with running in a Windows environment, it may be hard to ensure the student code, which is almost always targeted at UNIX environments, would compile and execute in an identical fashion on a Windows machine.

5 Project Schedule

The project will be developed using the spiral method. This, being an iterative development approach, will have 5 deliverables. The first release will be primarily an investigation phase – the major deliverable being a prototype. The file phase will be a fully functional, documented and ready to deploy system. Each step in between progressively add functionality to achieve those final requirements.
5.1 Milestones / iterations / releases
5.1.1 R1 – The Framework

5.1.1.1 Prerequisites
 FORMCHECKBOX
 Requirements doc (SRS)

 FORMCHECKBOX
 Project plan

5.1.1.2 Description

This phase will be dedicated to the creation of the system design. After the major system requirements have been defined, the system architecture (or high level design) will be created. From this, necessary classes will be identified and stubbed. A simple UI will allow users to get a feel for the flow of the system even though there will be little to no functionality.

5.1.1.3 Exit criteria
 FORMCHECKBOX
 Design doc

 FORMCHECKBOX
 Test plan

 FORMCHECKBOX
 Stubbed implementation of all major classes

 FORMCHECKBOX
 Professor – Navigate the lab / activity creation process

 FORMCHECKBOX
 Student – Navigate the answer submission process

 FORMCHECKBOX
 Grader – Navigate the grading process

5.1.2 R2 – Submit and grade

The highest priority functionality will be added in this phase. By the end of this phase, each user type (excluding administrators) will be able to complete the most basic of tasks. This creates the first usable version of the system in which handling of non-code submissions will be fully functional. The user interface may still be very ruff but the functionality required by the exit criteria will be tested and operating smoothly.

5.1.2.1 Exit criteria
 FORMCHECKBOX
 Test suite to simulate student submissions

 FORMCHECKBOX
 Professor - Create lab / activities

 FORMCHECKBOX
 Student - Submit answer

 FORMCHECKBOX
 Grader – Review saved submission files and assign grade

5.1.3 R3 – Compile and test

This phase will be dedicated to the possibly complex process of compiling and testing code files. The necessary configuration options will be added to the professor’s lab creation process. The student will be allowed to view the results of non-hidden tests immediately after submission – a gradebook will also be available to them for viewing previous labs / activity results. Test results will be logged and made available to graders for viewing during the grading process.

5.1.3.1 Exit criteria
 FORMCHECKBOX
 Test suite – Continue to add test cases

 FORMCHECKBOX
 Professor – Define tests for activities

 FORMCHECKBOX
 Student – Receive immediate feedback from test results, view gradebook

 FORMCHECKBOX
 Grader – Review test result logs

 FORMCHECKBOX
 Administrator – Add / remove user privileges

5.1.4 M4 – Code Complete

All remaining functionality will be coded in this phase. This may include the implementation of a sandbox for additional security, fine tuning of the UI, configuring the application for a distributed environment, etc.

5.1.4.1 Exit criteria
 FORMCHECKBOX
 Code complete & unit tested

 FORMCHECKBOX
 Grader – Review standard metric results

5.1.5 M5 – Gold

No additional functionality will be added to the system in this phase. The test suite will be completed and used to verify the final acceptance criteria. Usability tests will be conducted, making minor changes in attempts to optimize the process – focusing primarily on the student process.

5.1.5.1 Exit criteria
 FORMCHECKBOX
 All acceptance tests pass

5.2 Miscellaneous deliverables

 FORMCHECKBOX
 Interim progress report presentation

 FORMCHECKBOX
 Project poster

 FORMCHECKBOX
 Final project presentation

6 Quality Plan

6.1 Change Control

Any change that would increase or decrease the size of the project scope will have to be approved by the members of the group. Since all members of the group are considered equal in our organization, a majority vote will designate the approval of a scope change request. This form provides the most flexible and immediate response to such changes.

Also changes to all documents will go through a version control system that is to be decided by the team. This control system shall allow the tagging of documents with custom tags and version numbers. All transactions should be logged and dated and include a brief description as to what occurred during the transaction.

6.2 Configuration Management

Each system build will have its name suffixed by the iteration number, and the build number. This allows us to keep all builds unique and separate. No confusion should arise following this format.

6.3 Defect Tracking

When a defect is found, a description of the defect will be recorded. A defect identification number will be assigned to the defect. Severity will be assigned as well. The defect will also be stored in a persistent store for tracking purposes. At a time when the defect has been fixed, it will be closed within the persistent store. However, it will not be removed. This information will be used in our metrics gathering process which will occur throughout the project.

7 Test Plan

7.1 Overview

In general, most of the testing done will be component and system-level tests.

The testing for the Try Again assignment submission tool will be mostly a set of simple unit tests to verify functionality. System-level testing will also be carried out at the end of each development cycle once the code has been fully developed. Integration testing will not be necessary because of the small size of the development team. The testing will be structured to evaluate correctness of the code for the earlier cycles in development and then switch to more enhanced performance testing as the software readies for the official release.
7.2 Testing Schedule
We plan to apply component and system tests once after each development cycle (spiral model) to ensure that no unintended changes are introduced, and we also will re-run the test suite after bugs are found and corrected to ensure that new bugs are not introduced. The Try Again system regression test(s) will be done weekly to lessen the possibility of unintended changes in the code. Also, acceptance tests will be run as stakeholders take possession and of the official release.
8 Documentation Plan

8.1 Planned Documentation

This section identifies the individual documentation to be prepared during the total system life cycle.

8.1.1 Standard Documentation

· Project Plan

· Minutes, Reports, etc.

8.1.2 Software Engineering Documentation

· Software Requirements Specification

· Software Design description
· Interface Design description
· Database Design description

· Source code listings

8.1.3 Test Documentation

· Software Test Plan

· Software Test Designs/Descriptions
· Software Test Procedures

· Software Test Report

· Acceptance Test Procedures
· Acceptance Test Report

8.1.4 Operation and Support Documentation
· Software Developer’s Manual
· Javadocs

· Software User’s Manual

· Administrator’s Manual

8.1.5 Maintenance Documentation

· Bug reports

8.2 Schedule

In general, the software documentation will be produced and/or updated after each subsequent development cycle where applicable.
DragonSoft – Page 5 of 10

