[image: image1.emf]Software Requirements Specification

Document Information

Title:

Senior Project, Excellus BCBS Claims Service-Oriented Architecture

Performance Prototype

Start Date:
November 27, 2005

Planned End:
May 26, 2006

Created By:
Hooloovoo Software

Create Date:
January 19, 2006

Table of Contents

11.
Introduction

1.1
Purpose
1
1.2
Document Conventions
1
1.2.1
Italicized Text
1
1.2.2
Alternates and Exceptions
1
1.2.3
Underlined Text
1
1.2.4
Use Case IDs
1
1.2.5
Nonfunctional Requirement IDs
1
1.3
Intended Audience and Reading Suggestions
2
1.4
Project Scope
2
1.5
References
2
2.
Overall Description
2
2.1
Product Perspective
2
2.2
Product Features
3
2.3
User Classes and Characteristics
3
2.4
Operating Environment
3
2.5
Design and Implementation Constraints
3
2.6
User Documentation
3
2.7
Assumptions and Dependencies
3
3.
System Features
4
3.1
Process Incoming Claim
4
3.1.1
Description and Priority
4
3.1.2
Stimulus/Response Sequences
4
3.1.3
Functional Requirements
4
4.
Interface Requirements
4
4.1
User Interfaces
4
4.2
Hardware Interfaces
4
4.3
Software Interfaces
4
4.4
Communications Interfaces
5
5.
Other Nonfunctional Requirements
5
5.1
Performance Requirements
5
5.2
Safety Requirements
5
5.3
Security Requirements
5
5.4
Software Quality Attributes
5
5.4.1
Flexibility
5
5.4.2
Maintainability
6
5.4.3
Reusability
6
6.
Other Requirements
6
6.1
Metrics
6
6.1.1
Performance
6
6.1.1.1
Communication Time
6
6.1.1.1.1
Service Time
6
6.1.1.1.2
Call Time
6
6.1.1.2
Time to Process a Claim
6
6.1.1.3
Resources Used
7
6.1.1.3.1
CPU Usage
7
6.1.1.3.2
Memory (RAM) Usage
7
6.1.1.4
Data Throughput
7
6.1.1.5
Load Scalability
7
6.1.2
Effort
7
6.1.2.1
Man Hours
7
6.1.2.2
Function Points
7

Revision History

	Name
	Date
	Reason For Changes
	Version

	Jason Cavett
	01/19/06
	Began the SRS. Worked on the Introduction. (Section 1)
	1.0

	Jason Cavett
	01/22/06
	Added Jaden’s sections to the document.
	1.1

	Jason Cavett
	01/22/06
	Added Erik’s sections to the document.
	1.2

	Jason Cavett
	01/24/06
	Added Justin’s sections to the document.
	1.3

	Jaden Bruun
	01/25/06
	Approved by Eric Stephens.
	2.0

	Jason Cavett
	01/26/06
	Added metrics.
	2.1

	Jason Cavett
	02/01/06
	Added and reviewed Jaden’s changes to the metrics.
	2.2

1. Introduction

1.1 Purpose

This Software Requirements Specification (SRS) document describes the Claims Service-Oriented Architecture Performance Prototype (CSOAPP). The scope of this release includes the following components:

· the release of the base version of CSOAPP

· three following releases with performance improvements made to the CSOAPP base

· documentation analyzing the improvements made to the CSOAPP

These components will allow the customer to analyze and determine how services should be utilized and how the communication between services will be handled.

1.2 Document Conventions

1.2.1 Italicized Text

Text that is italicized represents terms that can be found in the SRS glossary. A term is only italicized the first time it is used in the document.

1.2.2 Alternates and Exceptions

Alternates and Exceptions within a use case are defined by placing << Alternate # >> or << Exception # >> tags on their own lines, where # represents the number of the Alternate or Exception within that specific use case. Alternates and Exceptions occur within the normal or alternate flows of a use case.

1.2.3 Underlined Text

Underlined text denotes a term that can be found in the Data Dictionary. A term is only underlined the first time it is used within the SRS.

1.2.4 Use Case IDs

Use cases are identified by their unique ID values which are assigned when the use case is added to the SRS document. All use cases will follow the guidelines for defining use case IDs.

UC-#

1.2.5 Nonfunctional Requirement IDs

Nonfunctional requirements are identified similar use cases. All use cases will follow the guidelines defining nonfunctional IDs.

NF-{non-functional requirement identification}-#

The only change from the use case identification is that the first two letters that are associated with the nonfunctional requirement are equal to the first one or two letters of the nonfunctional requirement. For example, if the nonfunctional requirement is “Availability,” the format of the ID would be: NF-AV-1.

1.3 Intended Audience and Reading Suggestions

This SRS is intended for the following:

· Product and Systems Managers

· Developers

· Documentation Writers

The rest of this document provides an overall description of the product features, user classes, requirements, and interfaces between components of the system. In addition, non-functional requirements are discussed in Section 5 of this document.

It is recommended that all reviewers of this document read Section 2 which provides the overall description of the system and a solid background on the purpose of CSOAPP. Each user should then focus on specific sections as suggested.

· Product and System Managers

· Section 5 – Non-Functional Requirements

· Developers

· Section 3 – System Features

· Section 4 – Interface Requirements

· Section 5 – Non-Functional Requirements

· Documentation Writers

· Section 3 – Interface Requirements

· Section 5 – Non-Functional Requirements

1.4 Project Scope

Please refer to the Project Plan. See Appendix B, Figure 1 for a high level diagram of the claims-service system.

1.5 References

Hooloovoo Software. (December 2005). Project Plan 1.2.

Hooloovoo Software. (January 2006). Software Interface Design 1.1.

2. Overall Description

2.1 Product Perspective

CSOAPP is an investigation into the feasibility of the design and implementation of future service‑oriented systems. Currently, many applications are not service-oriented, and in the future, Excellus hopes to rewrite some of these applications to use enterprise services. CSOAPP will investigate the best way this implementation should occur.

2.2 Product Features

CSOAPP does not provide any direct features to the end-user. Instead, the CSOAPP will provide feedback on the ability of a Java-based, service-oriented architecture to perform claim-service processing under the constraints provided by the customer.

2.3 User Classes and Characteristics

Because CSOAPP does provide any direct functionality and because users do not interact directly with the application, there are no specific user classes that access this application.

2.4 Operating Environment

CSOAPP will be run within a WebSphere Application Server v5.1 operating environment running on Windows NT/2000/XP. The Sun Java SDK v1.4 will be used along with the Sun Java J2EE SDK v1.3.

2.5 Design and Implementation Constraints

CSOAPP must adhere to the current Excellus Java Coding Standards documentation. It must run on a Windows NT/2000/XP platform. It must run in a WebSphere Application Server v5.1 environment. It must be written using Java SDK v1.4 and Java J2EE SDK v1.3.

2.6 User Documentation

Because of the nature of this application the documentation provided with CSOAPP makes up part of the final delivery of this release. For this release, the customer will receive the final versions of the product development documentation. This includes requirements documentation, design documentation and any test information.

Also included with this data will be a final report which details the base system of the CSOAPP. From this, the provided documentation will provide details on the methods and techniques used to improve performance of the base system. These techniques will be detailed, and information will be included which describes the performance change for the different techniques and the effort that is needed to implement the performance technique.

2.7 Assumptions and Dependencies

It is assumed that CSOAPP is not intended to deliver a functional software package except to the extent that it demonstrates the investigated performance techniques. The documentation and source code of CSOAPP will be the main deliverables.

3. System Features

3.1 Process Incoming Claim

3.1.1 Description and Priority

The system receives an incoming claim and processes it.

Priority: High

3.1.2 Stimulus/Response Sequences

Stimulus:
A claim is received by the claims processing service.

Response:
The system validates the claim for completeness and correctness. It determines the member’s eligibility, pays or denies the claim and then stores the claim in the member’s claim history.

3.1.3 Functional Requirements

Claims.Processing:
The system shall process claims received.

4. Interface Requirements

4.1 User Interfaces

There are no user interfaces for this project.

4.2 Hardware Interfaces

There are no hardware interfaces for this project.

4.3 Software Interfaces

There are several internal interfaces for this system. These interfaces are exposed through a Java Stateless Session Bean.

Claim Search Service

Claim Management Service

Membership Search Service

Membership Eligibility Service

Product Search Service

Provider Search Service

There will also be an external interface for this system. This interface is exposed through a Java Stateless Session Bean.

Claim Processing Service

For a complete description of these interfaces, see the Software Interface Design document and corresponding Software Interface UML document.

5. Other Nonfunctional Requirements

5.1 Performance Requirements

Although not necessarily a requirement, the performance measurements of each enhancement iteration are the most important deliverables for the project. These measurements will be relative to the baseline performance measurement. For example, if the baseline measurement is 100 seconds and an iteration has a measurement of 50 seconds, it should be stated that there is a 50% increase in performance. The actual times (100 seconds and 50 seconds) are unimportant due to the test environment being different than the actual production environment and the fact that the services will be stubbed out.

When measuring performance, it is important to keep as many variables constant as possible. In our case, this would include which computer the program is running on and how many applications are running on the computer.

5.2 Safety Requirements

There are no safety requirements for this project.

5.3 Security Requirements

There are no security requirements for this project.

5.4 Software Quality Attributes

5.4.1 Flexibility

Since the findings of this project will be applied to numerous applications within the Excellus infrastructure, our project needs to be as flexible as possible. It can be assumed that applications will be running in a Java environment. Outside of that, there should be no assumptions made about the applications that will use the findings of this project. The findings of our project should not contain any information that will only be useful to a specific Excellus application.

5.4.2 Maintainability

The findings of this project will be modified for use in a wide range of applications. It is important that modifications can be made easily and quickly. Also, the source code must be quickly and easily understood by a Java developer with 3 years experience.

5.4.3 Reusability

This is important because the more reusable the code is, the easier it will be for Excellus to implement the findings of this project. If new services are added to Excellus' inventory, it should be easy to make them interact with other services. Ideally, the majority of the code should be reusable and will not require a rewrite.

6. Other Requirements

6.1 Metrics

6.1.1 Performance

Collecting the following metrics will allow us to compare each performance enhancement to the baseline on multiple dimensions. This is important because there may be tradeoffs. For example, a performance enhancement might decrease service call time, but it may use more system resources. By gating the following metrics, it is possible to make a decision on the best tradeoffs between performance enhancements made to the system.
6.1.1.1 Communication Time
Communication time refers to the time it takes for services to call one another. This metric will be calculated by subtracting call times from service times. For example, if a service takes 10 seconds to run and the process it depends upon takes 9 seconds to run, then there is 1 second of communication time between the two processes. This will be a main area of focus while implementing the performance enhancements.

6.1.1.1.1 Service Time
The service time is the time it takes for one service call to complete. To compute this, timestamps will be generated as soon as the process begins and just before it returns.
6.1.1.1.2 Call Time
The call time is the time it takes for a subroutine call within a service to complete. Much like the service time, this will be computed by comparing timestamps that are generated as the process begins and just before it ends.

6.1.1.2 Time to Process a Claim

This metric describes the amount of time it takes for the highest level service to execute once. The input will be a claim that requires processing and the output will be the status of the processing (pass/fail). This execution will depend on multiple service calls and many levels of communication time will be calculated.

6.1.1.3 Resources Used

The amount of system resources the claim processing service requires while running.

6.1.1.3.1 CPU Usage

The percentage of CPU that the claims processing service requires while running.

6.1.1.3.2 Memory (RAM) Usage

The percentage of memory that the claims processing service requires while running.

6.1.1.4 Data Throughput

The amount of data passed between services, measured in bytes. This metric will have a positive relationship with the communication time metric. As the amount of data transferred increases, the time it takes to communicate will increase as well.

6.1.1.5 Load Scalability
This metric will be determined by stress testing the claims processing service. There are two types of loads that will be collected. First, the time it takes to process a certain number of claims sequentially will be recorded. Second, the time it takes to process a certain number of claims simultaneously will be recorded.

6.1.2 Effort

The following metrics will measure the effort required to implement the baseline and performance enhancements. These metrics will be important while determining which performance enhancements will be recommended to Excellus. For example, if a certain performance enhancement increases performance only moderately but requires a large amount of effort, it might not be worth it for Excellus to implement and therefore will not be recommended to them.

6.1.2.1 Man Hours

The number of hours it takes to implement the baseline and performance enhancements. Not only will each man hour be collected, but also what task that hour was spent on (such as design, implementation, testing, etc) will also be recorded. This will provide us the maximum flexibility when comparing effort to performance increase to determine recommendations.

6.1.2.2 Function Points
As an alternative way of measuring effort, the major function points of the system will be determined, along with their complexity. Larger and more complex enhancements will contain more function points and will therefore be more difficult to implement. This metric should have a positive relationship with the man hours metric.

Appendix A: Glossary

CSOAPP – Claims Service-Oriented Architecture Performance Prototype; the software that is being described by this SRS

Appendix B: Analysis Models

[image: image2.jpg]———External Script

Initiate Claims
Processing

More Claims to

Finish Processing,

Claim Filed Incorrectly-

Return Claim for
Manual Corrections,
Claim Pending

be Processed?

Yes

Assess Claim for
Correctness

Claim Payable-

'

No-

Wite Batch History

|-Claim Filed Correctly

Assess Claim

for bayabiity |—Claim Not Payable

'

Pay Provider

Done With
Claim, Write
Claim History

Notify Provider of
Reason for Denial

Figure 1 - Claims Processing System Analysis

Appendix C: Issues List
See “Issues.doc”
Copyright © 2002 by Karl E. Wiegers. Permission is granted to use, modify, and distribute this document.

