[image: image1.png]

ImagineIT Workshop,

part of Project ACE (Accessible Computing Education)

Lego Mindstorms NXT, NXC Tutorial Handouts

This lesson has been tested with students with visual impairments in grades 7 – 12

This work is funded as part of the National Science Foundation,

Broadening Participation in Computing Program (Award #0634319)

[image: image2.png]

Principal Investigator: Dr. Stephanie Ludi, sal@rit.edu

P0: Your Robot’s First Steps

As the saying goes “Before you can run, you must learn to walk.” The same can be said for robots and the same can be said about learning new things like developing software. With your first program, you will allow your robot to take its first steps.

In this program, the robot will move forward for four seconds and then stop. Your program is completing a task call main, in this case moving forward. It can do other tasks later as you learn new commands and how to logically arrange them. You will notice that the program needs to tell the computer when the program starts and stops, which you will use in all your subsequent programs as well.

The first program looks like the following:

#include "Subroutines.nxc"

/**

This program moves the robot forward for one second, then stops.

@author Jeremy Leakakos

**/

task main()

{

 forward;

 Wait(1000);

 Stop;

}
This program is written in a programming language called NXC, which stands for Not eXactly C. Each line contains commands and other information needed for the program. The first line:

#include "Subroutines.nxc"

means that the program uses commands from a file called Subroutines.nxc. Such commands will help make programming easier and more powerful. You can have multiple such include statements.

The next few lines are called commends:

/**

This program moves the robot forward for one second, then stops.

@author Jeremy Leakakos

**/

Comments are notes such as what the program does, when and why a change was made, who the author is, or what a particular set of commands does when a program is complex. They are important and help people understand what the program is doing. In this case the comment says what the program is for and who the author is. When creating comments, you have to signal the compiler that the comments are not other program commands and statements. To set the comments apart you can put your notes between /* and */ symbols. You can also put 2 slashes, //, at the beginning of your comment on a line. If you don’t then BricksCC will give you an error as it won’t know what you are talking about.

The following line is the name of the main program:

task main()

It is possible to have very long and complex programs with multiple parts, but all projects have a main task called main that drives everything else. This signifies where the program starts.

The following line is short, with the } symbol. This stands for the beginning of the programming statement grouping, in this case for the program itself. When you have a subgrouping, which you will learn about later, you use one to show where it begins as well.

The next line:

Forward;

means that the robot moves forward, straight ahead from its current position.

The next line:

Wait(1000);

Means that while the robot is moving, it is running a timer for 1 second. In the NXC language, seconds are generally not entered as 1 second, 2 seconds and so on. Instead commands such as Wait, want to know what time they should use in increments of milliseconds (1/1000 of a second) so 1000 is 1 second, 2000 would be 2 seconds and so on.

The next line:

Stop;
tells the robot to stop by turning off the motors it uses to move.

The last line contains the } symbol, which means the end. In this case it is the end of the program.

Compiling, downloading and running your program

After you have entered your program into the editor, you must compile it. The compiler checks the syntax (spelling and usage) of the statements you have entered. If there are any compilation errors, there will be one or more messages at the bottom of the editor window identifying the line number where the error was detected. The program must compile with no errors before you can download it to the robot. You must repeat the compilation process every time you make any change to the program.

After you have successfully compiled your program it can be downloaded to the robot using the download command in the editor. Make sure the USB cable is connecting your robot and the computer. The program will appear on the robot in the Software Files area with the same name you used in the editor. If you download a program with the same name, it will replace the file on the robot with the one being downloaded from the computer.

To run your program on the robot, select the file name using the middle (orange) button. Selecting the same button again will run the program. The program will run to completion or can be stopped by selecting the button immediately below. Be sure to disconnect the USB cable before testing your program!

You will learn more commands and ways to structure your program, but it needs to take these baby steps first.

Lesson 1a: Move Forward, Turn Around, Play Sound

In this lesson, you will learn new commands so that your robot can move around more and give you audio feedback. You already know how to program the robot to move forward. Now you will learn how to make the robot turn and play a sound.

Turning

To Turn the robot, you must say not only that you want the robot to turn but also what direction and how much. So to have the robot turn right 180 degrees, you enter:

turn(180, RIGHT);
If you wanted the robot to turn left 90 degrees, you would type

turn(90, LEFT);
Playing a Sound

Use the PlayTone command to have the robot play a sound. You need to tell the robot the frequency of the sound you want played and for how long. With this command the robot is not going to play a sound file. Instead the robot is playing a tone of a specified frequency and duration.

To have the robot play a tone at 440 Hertz (an A note for those who are familiar with reading music) for half a second, the command would be:

PlayTone(440, 500);
The entire program to make the robot move forward for a second, stop, turn around, and play a sound is below. Type in the program, compile it and run it to allow your robot to be more active.

#include "Subroutines.nxc"

task main()

{

 forward;

 Wait(1000);

 stop;

 turn(180, RIGHT);

 PlayTone(800, 200);

 Wait(300);

}
When you are done typing in the program, save it to s file named move.nxc Now compile the program, download and run the program on your robot.

Lesson 1b: Move Forward until Touch, then Turn Right

In this lesson, you will use the touch sensor so that your robot can start interacting with its environment. You already know how to program the robot to move and turn. Now you will learn how to start working with its sensors.

In order to have the robot use the touch sensor, it must know it can use it. The command: SetTouchSensor tells the robot that the touch sensor is on Input 1 on the NTX brick. You need to issue this command before you can use the touch sensor in the program.

In order to have the robot react to the environment with the touch sensor, it needs to react to the touch sensor being activated. To do this, the program waits until the touch sensor is activated or action is True (signified by the number 1). This is represented by the statement:

until(TouchSensor == 1);
To see these commands in action, type in the following program:

#include "Subroutines.nxc"

task main()

{

 SetTouchSensor;

 Forward;

 until(TouchSensor == 1);

 stop;

 backup;

 Wait(1000);

 stop;

 turn(90, RIGHT);

}
Save the program under a file called touch.nxc.

Now compile the program, download it to the robot and run the program. What does the program allow the robot to do?

Lesson 1c: Repeat

In this lesson, you will use the Repeat statement. You already know how to program the robot to move and interact with its environment a bit. But if you want to do a set of actions multiple times, the program can quickly become quite long. If you use a Repeat statement, you can keep your program more compact and easy to read.

To use the Repeat statement, you need to use the Repeat statement, and signify how many times you want the items repeated. Then you need to show what code you want included with the repeat since you don’t necessarily want every statement repeated for the rest of your program. To show which statements are associated with the Repeat, use the { and } before the first statement and last statement to be repeated, respectively.

The program below will repeat the following movements 3 times: move forward until the robot touches a wall, then it stops, moves backwards for 1 second and turns to the right

To see the repeat in action, type in the following program:

#include "Subroutines.nxc"

task main()

{

 SetTouchSensor;

 repeat(3)

 {

 forward;

 until(TouchSensor == 1);

 stop;

 backup;

 Wait(1000);

 stop;

 turn(90, RIGHT);

 }

}
Save the program under a file called repeat.nxc.

Now compile the program, download it to the robot and run the program. As you see, the robot does the same thing as the program in 1c but it does it 3 times.

In the time remaining, try a different number for the repeats or even add new statements. Observe what happens to the robots movement based on your programming.

Lesson 2a: Using the Sound Sensor

In this lesson, you will use the Sound sensor. You already know how to use the touch sensor, but the robot can react to sound as well.

First, you need to have a value that the sensor can compare against – a threshold for the volume of the sound that is between 0 and 100. For the example program, the threshold is called THRESHOLD and it is given the value of 40. At the top of the program before main, the value is declared as:

#define THRESHOLD 40
Within the body of the program, but before you use the Sound sensor you must tell the program that the sensor can be used. This is done in a similar way as the other sensors, but the command for the Sound sensor is:

SetSoundSensor;

Now you can use the sensor to detect sound and compare it against the threshold that you defined earlier. For example if you want the robot to move forward if the sound that it heard is greater than or equal to 40, you would say:

if(SoundSensor >= THRESHOLD)

 {

 forward;

 }
Note that I introduced a conditional called While to show that you can have the robot react depending on certain condition. In the sample program, the robot will start moving forward when you clap and it will stop when you clap again.

Type in the following program to explore the use of the sound sensor:

#include "Subroutines.nxc"

#define THRESHOLD 40

task main()

{

 SetSoundSensor;

 while(true)

 {

 until(SoundSensor >= THRESHOLD);

 forward;

 Wait(300);

 until(SoundSensor >= THRESHOLD);

 stop;

 Wait(300);

 }

}

Save the program under a file called soundsensor.nxc. What do you think the robot will do?

Now compile the program, download it to the robot and run the program. Were you correct in your predictions about the robots behavior?

In the time remaining, try different THRESHOLD values to explore the sensitivity of the Sound sensor.

Lesson 2b: Using While and If Then

In this lesson, you will learn about 2 new conditional statements called While and If Then. You already know how to program the robot to move and interact with its environment but you may not want your robot to do so all of the time or only under certain conditions. You have choices depending on how you want to approach the problem at hand.

While

To have the program execute one or more statements as long as a condition is met (or true), you use the While condition statement. You set up the while in a similar way that you would set up a Repeat statement, except instead of telling the program how many times you want something done you instead have what condition must be true in order for the statements in the While to execute. Like the Repeat you need to group the statements together that you want associated under the While statement with the { and } symbols before and after the list of statements.

For example, if you say:

while(TRUE)

 {

 forward;

 }

it means, move forward infinitely since while it always true. If you want to be pickier, you can say something like:

while(SoundSensor >= 30)

 {

 forward;

 }

which means that while the robot will move forward as long as the sound is above or equal to 30 units in loudness. As soon as the sound that the sensor hears is less than 30, the robot will stop.

If Then

Rather than repeating statements, you may want to make a decision based on whether a condition is met. To do this you use If Then, which means If a specified condition is true Then you do the specified statement(s).

In the example below, the if statement says that if the touch sensor is pushed, then the robot stops.

if(TouchSensor == 1)

 {

 stop;

 }
As you notice, like the while statement the if’s condition is in parentheses. Also, the statements associated with the if, in this case the stop statement, has a { at the beginning and a } after the statement. This shows that only this statement is associated with the If condition statement. You notice that while this is called an If Then there is no Then word to type. In the NXC language you don’t type the work Then, but when you read the code you say the word Then as it helps understand the logic and flow. In other programming languages, the work Then is used before the first {.

Type in the following program to see the While and If Then in action:

#include "Subroutines.nxc"

#define THRESHOLD 35

task main()

{

 SetTouchSensor;

 SetSoundSensor;

 while(TRUE)

 {

 while(SoundSensor >= THRESHOLD)

 {

 forward;

 if(TouchSensor == 1)

 {

 stop;

 backup;

 Wait(1000);

 stop;

 turn(90, LEFT);

 forward;

 }

 }

 stop;

 }

}
Save the program under a file called while-if.nxc.

Now compile the program, download it to the robot and run the program. What does the program do?

Lesson 2c: The Ultrasound Sensor

In this lesson, you will use the Ultrasound sensor to interact with the environment. You already know how to use the sound and touch sensors. But if you want to allow your robot to see obstacles, the ultrasound sensor is an option as well. The Ultrasound sensor uses sound to see by sending out ultrasonic waves and measuring the time it takes for the waves to be reflected back to the sensor from the object it is facing. With a Touch sensor, the robot must touch an object, but the Ultrasound sensor can see an object (in a manner of speaking) without needing to touch it first.

Like the sound sensor, you need to have a value that the sensor can compare against – a threshold for the distance. For the example program, the threshold is called NEAR and it is given the value of 25 centimeters. At the top of the program before main, the value is declared as:

#define NEAR 25
Within the body of the program, but before you use the Ultrasound sensor you must tell the program that the sensor can be used. This is done in a similar way as the other sensors, but the command for the Ultrasound sensor is:

SetUltraSonicSensor;

Now you can use the sensor to detect things with the use of the threshold that you defined earlier. For example if you want the robot to move forward as long as the distance is greater than 26 centimeters away, you would say:

while(UltraSonic > NEAR)

 {

 forward;

 }

Note that I said 26 centimeters and not 25 centimeters away – this is because of the use of the > sign and not >=.

Enter the following program:

#include "Subroutines.nxc"

#define NEAR 25 //in centimeters

task main()

{

 SetUltraSonicSensor;

 repeat(3)

 {

 while(UltraSonic > NEAR)

 {

 forward;

 }

 stop;

 backup;

 Wait(1000);

 stop;

 turn(90, LEFT);

 }

}

Save the program under a file called ultrasound.nxc. Before you run the program, what do you think the program will do? Why do you think the program will behave as you predict?

Now compile the program, download it to the robot and run the program. Did the program behave as you thought it would?

In the time remaining, try some different conditions or add some statements to further explore these concepts.

ImagineIT Workshop 2007

15

