[image: image2.png]

Scrum Management System - Readme

7

Scrum Management System (SMS)

Readme v1.0

Table of Contents:
1.0 Overview

2.0 Application Layout

2.1 Model-View-Controller
2.1.1 Controllers

2.1.2 Models

2.1.3 Views

2.1.4 Helpers

2.2 Javascript & CSS

2.3 jQuery Overview

2.3.1 Plugins Used

2.3.2 Plugins Modified

3.0 System Dependencies
4.0 Installation (WindowsXP)

4.1 Ruby

4.2 Ruby on Rails

4.3 Mongrel

4.4 MySQL Adapter

5.0 Configuration

5.1 Database Configuration

6.0 Database Integration

6.1 MySQL

7.0 Glossary

1.0 Overview

The scrum management system (SMS) is a web application to allow global access and manipulation of tasks and user stories for Intel’s scrum process. The system is built using the Ruby on Rails API.

Ruby on Rails is a web framework built using the Ruby scripting language. It utilizes the Model, View, Controller architecture for rendering HTML pages for client side web-browsers. It supports connectivity to a number of different databases through the use of ActiveRecord API for Ruby. The SMS application was developed and tested using MySQL as the backend database but any database supported by ActiveRecord can be used with this product.
2.0 Application Layout

2.1 Model-View-Controller

Because Ruby on Rails uses the Model, View, Controller the main functional part of the application directory structure resembles the architecture pattern exactly.

SMS/app/controllers

SMS/app/models

SMS/app/views

Where the controllers are Ruby sub classes of ActionController::Base

SMS/app/helpers

This directory contains custom ruby functions that can be added and used

within your controllers, views, and models as convenience functions to encapsulate common functionality making your controllers less code intensive.

2.1.1 Controllers
Each function in a controller is automatically mapped to a specific URL from the base application directory. These functions are known as actions. These mappings can be changed in the SMS/config/routes.rb file.

Ex.
http://localhost:3000/landing/uniqueUserstory?id=1
Notice: No file extensions are used this is the default for all actions.
The SMS application has three controllers

application.rb – This is the base controller that defines global functions and filters to for all other controllers.
landing_controller.rb – This is the main controller for the application that provides all actions for views and partials.
users_controller.rb – This is the controller that handles user login and redirecting to the landing controller.
2.1.2 Models (SMS/app/models/)
The model folder consists of ActiveRecord::Base subclasses representing all the tables within the database one class per table. Custom functions and filters can be added to the models to make database querying easier.

The SMS project utilities the following Model files (one sub-class per file).

products.rb
projects.rb

sprints.rb

stories.rb

tasks.rb

user_roles.rb

user_settings.rb

users.rb
The files contain relationship constructs telling ActiveRecord how tables are related. Foreign keys are specified here as well, otherwise a direct association will be established if ActiveRecord finds a field in the table with the following format <table_name>_id. For Example: Projects belong to a Product so in the products.rb file you have the following:

class Projects < ActiveRecord::Base

belongs_to :products

has_many :sprints
end
And in the Projects table there is a field “product_id” and ActiveRecord will make the correct association between model classes.

has_many

belongs_to

has_many_and_belongs_to

2.1.3 Views

The views directory contains action view files, partial files, and other rendering type files (ex. XML). Partials are designated by an _ underscore at the start of the file name. The idea behind partials is so that the HTML and embedded ruby code doesn’t become bloated and cumbersome. The views directory also contain what are known as layouts. Layouts are common HTML, CSS, Javascript, and embedded ruby code that will get rendered for every action within a given controller. Each file corresponds to a specific controller name. If there is no layout file for a controller the application layout will be rendered. If the application layout does not exist no layout will be used. Layouts insert the actions rendered HTML at the “<%= yield %>” tags location.
A “action” in the controller can have a “html.erb” file associated with it which is placed in the views directory. This file contains HTML, CSS, Javascript, and embedded ruby code.
Embedded code is designated by the <%...%> tags. An “=” equals after the % (e.x. ‘<%=’) indicates that the string result of the code will be inserted into the final rendered page.

Partials are rendered using the render function and their resulting text is inserted at the line which made the call.
For example:

<%= render :partial => 'storypagetop',

:locals => { :story => currentstory, :storyid => currentstory.id, :allusers => allusers, :storystatus => storystatus, :storypriority => storypriority, :sizeofstory => sizeofstory } %>

Renders the partial file “_storypagetop”

Here is a hierarchical diagram of the view render tree.

[image: image1.emf]yields to

renders

Grey = Partial

layouts/landing.html.erb

landing/index.html.erb

landing/_windows.html.erb

landing/_storylist.html.erblanding/_explorer.html.erblanding/_storyboard.html.erb

landing/userstory.html.erb

landing/_userstory.html.erb

landing/_storypagetop.html.erblanding/_storydescandcriteria.html.erblanding/_tasklist.html.erb

landing/_taskfields.html.erblanding/_addtasklink.html.erb

2.1.4 Helpers

This directory contains modules that encapsulate helper functions for the views and controllers. Currently this is only being used to make the embedded ruby code more readable.
2.2 Javascript & CSS

Rails provides helper functions for embedded ruby code in the view files (“html.erb”) that will automatically resolve javascript and css file includes provided that the stylesheets and javascript files reside in the public/stylesheets/ and public/javascript/ directories.
SMS uses a javascript library called jQuery which is contained in
public/javascripts/jquery/

There is also a Multi-document Interface plugin built specifically for SMS:
public/javascript/jsms/jquery.mdi.js
The following javascript file was modified from the original jQuery version.
public/javascript/jquery/ui.dialog.js

The CSS stylesheet files in the public/stylesheets/ directory are as follows:

appLayout.css – used by the application layout

dragdrop.css – used by any of the partials that use the drag and drop features

landingLayout.css – used by the landing layout file

menubar.css – used by the menubar in the landing layout

storyboard.css – for the storyboard css

storylist.css – for story list css

storypage.css – for the storypage css

The css classes in the flora folder are used by the jQuery plugins but the images have been changed to the current look and feel.
2.3 jQuery Overview

“jQuery is a fast, concise, JavaScript Library that simplifies how you traverse HTML documents, handle events, perform animations, and add Ajax interactions to your web pages.” – jQuery.com

Documentation is available at http://jquery.com/
Alternate Documentation used for this project is at http://visualjquery.com/
Javascript is a functional scripting language that uses duck typing and offers very general encapsulation of functions into objects. Javascript stems from the ECMA Script standard. More information is available on Wikipedia - Javascript.
The version of jquery used was 1.2.2 and is included as part of the project including the ui plugins which were version 1.0.1a.

jQuery provides a means of accessing DOM objects or Document Object Model elements within the browser, (for example, a div tag or any html element). The main function/object in jQuery returns what is known as a jQuery object for that elements or set of elements. The jQuery object has all functions including any extended or added functions which are known as plugins.

2.3.1 Plugins Used

The following is a list of javascript plugins for jQuery that is used by the project. These are included at the beginning of any landing_controller action.

<%=javascript_include_tag 'jQuery/jQuery-1.2.2.pack.js' %>

<%=javascript_include_tag 'jQuery/jQuery.tablesorter.pack.js' %>

<%=javascript_include_tag 'jQuery/jQuery.dimensions.js' %>

<%=javascript_include_tag 'jQuery/jQuery.treeview.pack.js' %>

<%=javascript_include_tag 'jQuery/ui.dialog.js' %>

<%=javascript_include_tag 'jQuery/ui.resizable.js' %>

<%=javascript_include_tag 'jQuery/ui.mouse.js' %>

<%=javascript_include_tag 'jQuery/ui.draggable.js' %>

<%=javascript_include_tag 'jQuery/ui.draggable.ext.js' %>

<%=javascript_include_tag 'jQuery/ui.droppable.js' %>

<%=javascript_include_tag 'jQuery/ui.droppable.ext.js' %>

<%=javascript_include_tag 'jsms/tablefunctions.js' %>

<%=javascript_include_tag 'jQuery/ui.tabs.js' %>

<%=javascript_include_tag 'jsms/jquery.mdi.js' %>

<%=javascript_include_tag 'jsms/smsdragdrop.js' %>
Note: Rails javascript is included these definitions to ensure no conflict with the $(…) function since both jQuery and Rails use this function to provide cleaner code. Use of the $ function should not be a problem in any javascript file loaded before the rails javascript files.
<%=javascript_include_tag :defaults %>

The line above includes the rails javascript files any jQuery calls using the $ function

should be included be this line.
2.3.2 Plugins Modified

For this project it was necessary to modify one of the jQuery plugins for creating dialogs/windows within the browser. The plugin version used for the project did not offer support for minimizing, maximizing, restore, or z-ordering that were required for this project. Thus the javascript/jquery/ui.dialog.js was heavily modified and extended.

To accommodate the managing of multiple dialog windows in the browser a separate plugin was created called javascript/jsms/jquery.mdi.js
3.0 System Dependencies

Ruby Interpreter – Just for reference since the ruby on rails website contains a link to a windows installer for ruby.
Ruby on Rails – Navigate to the downloads section
Mongrel – Rails/Ruby server that is more robust and offers clustering features and can be run as a windows service.
4.0 Installation (WindowsXP)
Note: commands can be run from a command prompt window and from any directory unless otherwise specified.
4.1 Ruby on Rails

The goto the download section of the ruby on rails site. Follow the instructions there by first downloading and installing ruby then use the following ruby gems command.

gem install rails --include-dependencies
This will download the latest rails version and install it in the ruby directory. That’s pretty much it.
4.2 Mongrel

Use ruby gems to get mongrel with the following command line

gem install mongrel

4.2.1 Mongrel Window Service

Download the ruby mongrel windows service with the following command line:

gem install mongrel_service

Installing a New Application Server as a Windows Service

mongrel_rails service::install -N intelcrum -e development -p 80

Parameters

-N intelcrum is the name of the service

-e is the rails environment to run on the server.

-p is the port number

NOTE: you must be in the rails application directory in order for

mongrel_rails service::install to find the application.

Starting

Once created the service can be started and stop either by command

line or by going to Services in

Control Panel->Administrator Tools->Services and locating the intelcrum service in the list and right click to start it.

Uninstalling

Uninstalling the Mongrel Service

mongrel_rails service::remove -N intelcrum

This will remove the service from windows.
4.3 WEBrick

To start the WEBrick server use the following command line navigate to the

applications directory.

C:\SMS\> ruby script/server

To specify the port for the server and the development environment use the

following command line parameters.

C:\SMS\>ruby script/server –p XXXX –e YYY

Where XXXX is the port number, and YY Y is the development environment (Production, Test, and Development)

5.0 Configuration

5.1 Database Configuration
In the rails application directory there is a folder called “config” in the config folder there is a “database.yml” file which contains details for each rails environment database connection “development, test, and production”. The properties that need to be set are as follows:

adapter: mysql

database: intelcrum - test
host: intelcrum.se.rit.edu
username: root
password: intel08!
The adapter key specifies what type of database it used. The database is the name of the database. Host is the URL or domain name for the database server “localhost” is acceptable.

port: 5704

Is also a valid property. Note: that the yml file format does not contain tab characters.

6.0 Database Integration

6.1 MySQL

The MySQL adapter should come with the current version of rails and all you have to do is specify “mysql” in the SMS/config/database.yml
6.2 Microsoft SQL Server

gem install activerecord-sqlserver-adapter --source=http://gems.rubyonrails.org

6.3 Oracle

http://wiki.rubyonrails.org/rails/pages/Oracle
7.0 Glossary

	Word
	Definition

	Model
	A ruby class representing the table with the singular for of the name

	View
	A file designated by the type of file and the renderer ex. html.erb

	Controller
	A ruby class where each function in the class is automatically mapped to a url those functions are known as actions.

	MVC
	Model-View-Controller Architectural pattern separating the data to be manipulated (model), the way the data is displayed to the user (View), and the functionality that manipulates the data (controller). The view also links user actions to functionality in the controller

	SMS
	Scrum Management System

	Action
	A function in a controller that gets called in the process of rendering a URL page request from a client. Any get or post parameters are contained within the params hash.

	Partial
	Is a special view file designated by the ‘_’ underscore at the beginning of the file name. Partials are used to break up large chunks of HTML and Embedded ruby code to make it simpler to program and perform ajax element replacement on a page.

	Mongrel
	Is a ruby web-server designed to run rails application that supports clustering and load balancing to handle large amounts of traffic. Mongrel can be run as a windows service.

	WEBrick
	The generic web-server packed with Ruby on Rails

	ActiveRecord
	Ruby implementation of the ActiveRecord Object-relation mapping pattern. Which represents Tables in a database as object and fields as attributes of the class in order to allow for database manipulation without the use of writing direct SQL queries.

	Ruby on Rails
	Commonly referred to as just Rails. Is a web application framework for server side scripting with a lot of support for common web application features. Their motto is ‘convention over configuration’

	Ruby
	Is a object-oriented scripting language with a flexible syntax

	jQuery
	Is a javascript Ajax library

	Ajax
	Asynchronous Javascript and XML

	Layout
	A layout file consists of Javascript, CSS, HTML, and embedded ruby and is used for common HTML headers, javascript and CSS file including. As well as making a general page layout for the actions in a controller.

Author: Nicholas J Dziedzic

Team Members:

Dustin Keller

Chad VerDow

Nicholas J Dziedzic
Mike Starukhin
7 of 11

[image: image2.png]_1272712165.vsd
layouts/landing.html.erb

landing/index.html.erb

yields to

landing/_windows.html.erb

renders

landing/_storylist.html.erb

landing/_explorer.html.erb

landing/_storyboard.html.erb

landing/userstory.html.erb

landing/_userstory.html.erb

landing/_storypagetop.html.erb

landing/_storydescandcriteria.html.erb

landing/_tasklist.html.erb

landing/_taskfields.html.erb

landing/_addtasklink.html.erb

Grey = Partial

