Embedded Systems with ARM Cortex-M Microcontrollers
in Assembly Language and C

Chapter 2
Data Representation

Dr. Yifeng Zhu
Electrical and Computer Engineering
University of Maine

Spring 2018

Bit, Byte, Half-word, Word, Double-Word

One Byte (8 bits)

==
=

One Half-word (16 bits)

One Word (32 bits) 15

-‘

One Double-word (64 bits) 3

63 0
Most Significant Bit (MSB) Least Significant Bit (LSB)

Binary, Octal, Decimal and Hex

Decimal Binary Octal Hex
9 0000 00 Ox0
1 0001 01 Ox1
2 0010 02 Ox2
3 0011 03 0x3
4 0100 04 x4
5 0101 05 Ox5
6 0110 06 Ox6
7 0111 Q7 Ox7
8 1000 010 Ox8
9 1001 011 Ox9
10 1010 012 OXA
11 1011 013 OxB
12 1100 014 OxC
13 1101 015 OxD
14 1110 016 OxE
15 1111 017 OxF

Magic 32-bit Numbers

» Used as a special pattern for debug

» Used as a special pattern of memory values during allocation and de-
allocation

OxXDEADBEEF Dead Beef
OxBADDCAFE Bad Cafe
OxFEE1DEAD Feel Dead
©x8BADF0OOD Ate Bad Food
OxBAADFO0D Bad Food
OxDEADCODE Dead Code
OxFACEBOOC Facebook
©xDEADDO@D Deade Dude

Unsigned Integers

11111 90008 gggpy
11110 00010

11181

Convert from Binary to Decimal:

1011, =1 x23 +0x 22 +1x21 +1 x2°
11818 galle =8+2+1
=11

18111 Bl1eel

le11e 1618

180180 ellle

10001 1gggg 01111

Five-bit binary code

Unsigned Integers

Convert Decimal to Binary

Example |

Remainder

-1 MSB

Example 2
Remainder
2| 32 e 0 A LsB
2 16 e 9
2| 8 oo 0
2| 4 9
212 - %)
21 - 1 MSB
%)

Carry/borrow flag bit for unsigned numbers

* When adding two unsigned numbers in an n-bit system, a
carry occurs if the result is larger than the maximum
unsigned integer that can be represented (i.e. 2™ — 1).

* When subtracting two unsigned numbers, borrow occurs if
the result is negative, smaller than the smallest unsigned
integer that can be represented (i.e. 0).

* On ARM Cortex-M3 processors, the carry flag and the
borrow flag are physically the same flag bit in the status
register.

* For an unsigned subtraction, Carry = NOT Borrow

Carry/borrow flag bit for unsigned numbers

If the traverse crosses the boundary between 0 and 2™ — 1, the carry flag is set on

addition and is cleared on subtraction.

11111{00000 gpoo1
11110 00010

11101 00011

01101

10010 01110
10001 1qgpo 01111

A carry occurs when adding 28 and 6

Carry 1110 60

111060 28
+ 00110 + 6
11060 010 2
/ N - Y,
Extra bit is :
discarded. S-bit result

Carry flag = 1, indicating carry has occurred
on unsigned addition.

Carry flag is 1 because the result crosses
the boundary between 31 and 0.

Carry/borrow flag bit for unsigned numbers

If the traverse crosses the boundary between 0 and 2™ — 1, the carry flag is set on
addition and is cleared on subtraction.

1111100000 gopo1
11110 00010

11101 00011

Borrow 1 1 1 9 ©

OO0 11 3
11010 _ 00110 = @ @ 1 @ 1 - 5
1100 00111 1 1 1 1 @ 36
11000 01000 _ /
Y
10111 01001 5-bit result

10110 01010

* Carry flag = 9, indicating borrow has
occurred on unsigned subtraction.
01101 * For subtraction, carry = NOT borrow.

10010 01110
10001 10 01111

A borrow occurs when subtracting 5 from 3.

Signed Integer Representation
Overview

» Three ways to represent signed binary integers:
» Sighed magnitude
value = (—1)*"9"X Magnitude
» One’s complement (&)
at+a=2"-1
» Two’s complement ()
a+a=2"

One’s Two’s
- ST S BT Complement Complement

Range —2n 14 q,2n71 — [-2" 1+ 1,271 — 1] [—2771 2771 — 1]
| Zero Two zeroes (iO) Two zeroes (£0) One zero

Unique n_ n_ n

Signed Integers
Method 1: Signed magnitude

Sign-and-Magnitude:
value = (—1)°'9"x Magnitude

* The most significant bit is the sign. w0010 1" 00001
* The rest bits are magnitude. 10011

» Example: in a 5-bit system
» +7,, = 00111,
» -7, = 10111,

» Two ways to represent zero
» +0,, = 00000,
» -0,, = 10000,

» Not used in modern systems
» Hardware complexity
» Two zeros o P L, 010

Signed Integers
Method 2: One’s Complement

One’s Complement (a):
a+a=2"-1

11110 oy 00001
11101 mn 00010

The one's complement
representation of a negative
binary number is the bitwise
NOT of its positive counterpart.

Example: in a 5-bit system
+7,, = 00111,
-7, = 11000,

10010 L +710 + (_719) = @@1112 I+ 11@@@2

10001 01110

= 11111,
10000 01111
=25 -1

Signed Integers
Method 3: Two’s Complement

Two’s Complement («):
a+a=2"

11111 00000 ogoo1 TC of a negative number can be

obtained by the bitwise NOT of its
positive counterpart plus one.

moto / 00110 Example 1: TC(3)

—
0booo11

10111 01001 Step 1: Inver.‘t 0b11100
every bit

Step 2: Add 1 EEaNZlel[5]5[k]
Two’s complement oblilel -3

01101

10010 01110
10001 10000 01111

b 13

Signed Integers
Method 3: Two’s Complement

Two’s Complement (TC)
a+a=2"

11111 00000 ogoo1 TC of a negative number can be

obtained by the bitwise NOT of its
positive counterpart plus one.

moto / 00110 Example 2: TC(-3)

_

1100 o eblilel
10111 01001 Step 1: Invert 0b00o10
- every bit
101107\ 71010 Step 2: Add 1 EERCILLLEN
- Two’s complement 0boeo11 3

10010 01110
10001 10000 01111

b 14

Comparison

00000/ 11110 1999y 00001
10001 19ggg 00001 00010 11101 11111 00010 11111 00000 gogo1

10010 11110 00010

10011 11101

10110 00110 11001 00110 11010

00111 1100 00111
01000 10111

01001 10110

11010 01010 10101 01010 10110 i 01010

10001 01110 10
11111 01111 10000 01111 10001 1g0gg 01111

Signed magnitude One’s complement Two’s Complement
representation representation representation

@ = positive Negative = invert all TC = invert all bits,
1 = negative bits of a positive then plus 1

Overflow flag for signed numbers

» When adding signed numbers represented in two’s
complement, overflow occurs only in two scenarios:

I. adding two positive numbers but getting a non-positive result, or
2. adding two negative numbers but yielding a non-negative result.

» Similarly, when subtracting sighed numbers, overflow occurs in
two scenarios:

I, subtracting a positive number from a negative number but getting a
positive result, or

2. subtracting a negative number from a positive number but
producing a negative result.

» Overflow cannot occur when adding operands with different
signs or when subtracting operands with the same signs.

Overflow bit flag for signed numbers

11111 00000 gppo1

11110 00010

Overflow

0
10001 10000 1© 1111

An overflow occurs when adding two
positive numbers and getting a negative
result.

1100 12
+ 90101 + 65
10001 -15
N y;
\/
5-bit result

On addition, overflow occurs if sum > 2*
when adding two positives.

Overflow never occurs when adding two
numbers with different signs.

Overflow bit flag for signed numbers

11111 00000 gopo1

11110 00010

00011

An overflow occurs when adding two negative

numbers and getting a positive result.

10011 -13
+ 11001 + -7
1106110 0 12
/ “ y,
Y
Extra bit is :
discarded. S-bit result

On addition, overflow occurs if
sum < —2* when adding two
negatives.

Signed or Unsigned

©b10000
b = 0b10000
CcC =d+ b

Q
Il

» Are a and b signed or unsigned numbers!?

» CPU does not know the answer at all.

» Therefore the hardware sets up both the carry flag and
the overflow flag.

» It is software’s (programmers’/compilers’) responsibility
to interpret the flags.

Signed or unsigned

» Whether the carry flag or the overflow flag should be used depends on the
programmer’s intention.

If unsigned

addition, check If signed addition,

carry flag check overflow flag
@ o
Programmer

» When programming in high-level languages such as C, the compiler
automatically chooses to use the carry or overflow flag based on how this
integer is declared in source code (“int” or “unsigned int”).

Signed or Unsigned

©b10000
b = 0b10000
CcC =d+ b

Q
Il

» Are a and b signed or unsigned numbers!?

4)

uint a;

uint b; Check the carry flag!

c=a+b

Signed or Unsigned

©b10000
b = 0b10000
CcC =d+ b

Q
Il

» Are a and b signed or unsigned numbers!?

~)
int a;
int b; Check the overflow flag!

c=a+b

Signed Integer Representation
Method 3: Two’s Complement

Assume a four-bit system:

0100 + 0010 0110
0100 + 0116 1010
1100 + 1110 1010
1100 + 1010 0110

Signed Integer Representation
Method 3: Two’s Complement

Assume a four-bit system:

0100 + 0010 0110

90100 + 0110 1010 No Yes No
1100 + 11160 1010 Yes No Yes
1100 + 16160 0110 Yes Yes No

Why use Two’s Complement

Two’s complement simplifies hardware

Are signed and unsigned operations the same?
Addition Yes

Subtraction Yes

Multiplication Yes if the product is required to keep the same number
of bits as operands

Division No

Adding two signed integers:

(-9) + 6
-9 + 6
9 fip 1 72
1(0(1|1|1 (01|10 01001 —— 10110 — 10111
23 6 Two’s

Complement

29
: 3
flip +1
111{1(9]|1 > 00010 — 00011
Two’s Complement
-3 Counterpart

Subtracting two signed integers:

(-9) - 6
-9 - 6
9 fip 1 72
1(0(1|1]|1 ©0|0/1|1|0 01001 —— 10110 —— 10111
23 6 Two’s

Complement

15 .. _15
fl +1
1lelele|1 01111 —P, 10000 — 10001

Two’s Complement Simplifies Hardware
Implementation

» In two’s complement, the same hardware works correctly
for both signed and unsigned addition/subtraction.

» If the product is required to keep the same number of
bits as operands, unsigned multiplication hardware works
correctly for signed numbers.

» However, this is not true for division.

Condition Codes

Bit | Name Meaning after add or sub

N |negative | resultis negative

Z Zero result is zero

V | overflow | signed overflow

C |carry unsigned overflow

C is set upon an unsigned addition if the answer is wrong
C is cleared upon an unsigned subtract if the answer is wrong
V is set upon a signed addition or subtraction if the answer is wrong

Why do we care about these bits?

Formal Representation for Addition

When adding two 32-bit integers X and Y, the flags are
» N=R;,

» Zis set if R is zero.

» Cis set if the result is incorrect for an unsigned addition
C=X3:& Y31 |l X31&R_31 | Y31&R_31

» Vis set if the result is incorrect for a signed addition.
V=1X3& Y31&R_31 I X31 & Y31& R34

Formal Representation for Subtraction

When subtracting two 32-bit integers X and Y, the flags are
» N=R;,
» Zis set if R is zero.

» Cis clear if the result is incorrect for an unsigned
subtraction

C =Y31& R3y Il X31 & R3q Il X351 & Y34

» Vis set if the result is incorrect for an signed subtraction.
V =1X3,&Y31 &R31 || X31 &Y31& R34

American
Standard
Code for
Information
Interchange

| 0 |
| 2 |
| 3 |
| 4 |
N
| 6
| 8 |
| 9 |
| 20 |
=N
| 23 |
| 24 |
| 25 |
| 26 |
| 28 |
| 29 |
| 30 |

00
o1
02
o3
04
05
06
o7
08
09
0A
oB
ecC
eD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
ST
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuB
ESC

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B

SP 64
! 65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
: 20
8 91

1 + ¥~~~ v 20 ¥ H

s VWO NOUVHAWNRO-N:"-

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E

a4 N X EZE<CHUWVWIXO VOZ=Err AUWUHIOMMONT>E

96
97
98
99
100
101
102
103
104
1e5
106
le7
1e8
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B

mmmmmmmm

A wY—ANK X T <CcCrtwW 530909TOSSHHAWHEIMN-MODaANOoTO

Encoding 128 characters

Memory | Memory

Address Letter
str + 12 > 0x00 \o0

str + 11 > 0x79
str + 10 > ox6C
str + 9 > 0x62
str + 8 > ox6D
str + 7 > 0x65
str + 6 > 0x73
str + 5 > 0x73
str + 4 > ox41

str + 3 > 0x20 space
str + 2 > 0x4D M

str + 1 > 0x52 R
str > ox41 A

char str[13] = “ARM Assembly’’;

/[The length has to be at least 13

Il even though it has 12 letters.The

Il NULL terminator should be included.

>V un MmS O XK

String Comparison

Strings are compared based on their ASCI| values

» 97 <%jar” <“jargon” <“jargonize”

» “CAT” <“Cat” <“DOG” <“Dog” <“cat” <“dog”
y Y127 <%1237 <*2’<“AB” <“Ab” <“ab” <*abc”

Find out String Length

» Stings are terminated with a null character (NUL,ASCII value ©x00)

Pointer dereference operator Array subscript operator
int strlen (char *pStr){ int strlen (char *pStr){
int i = 0; int i = 0;
// loop until pStr[i] is NULL // loop until *pStr is NULL
while(pStr[i]) while(*pStr) {
i++; i++;
pStr++;
return i; }
} return i;
}

Convert to Upper Case

44 45 49 4A 4B 4C 4D 4E 4F

69 6A 6B 6C 6D 6E 6F

‘a’ - ‘A’ = Ox61 - Ox41 = Ox20 = 32

void toUpper(char *pStr){ void toUpper(char *pStr){
for(char *p = pStr; *p; ++p){ char ¢ = pStr[o];
if(*p >= ’a’ && *p <= ’2°) for(int i = @0; c; i++, c = pStr[i];) {
*p -= ‘a’ - ‘A’; if(c >= ’a’ && c <= ’2°)
//or: *p -= 32; pStr[i] -= ‘a’ - ‘A’;
} // or: pStr[i] -= 32;
} }
}

