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ARM Instruction Set Architecture 
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History 
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ARM Cortex Processors 
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 ARM Cortex-A family: 

 Applications processors  

 Support OS and high-

performance applications 

 Such as Smartphones, Smart TV 

 ARM Cortex-R family: 

 Real-time processors with high 

performance and high reliability 

 Support real-time processing and 

mission-critical control 

 ARM Cortex-M family: 

 Microcontroller 

 Cost-sensitive, support SoC  

 



Instruction Sets 
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Instruction Sets 
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from arm.com 



From C to Assembly 

6 



Load-Modify-Store 
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Load-Modify-Store 
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ARM Cortex-M3 Organization (STM32L1) 
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ARM Cortex-M4 Organization (STM32L4) 
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Assembly Instructions Supported 
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 Arithmetic and logic 

 Add, Subtract, Multiply, Divide, Shift, Rotate 

 Data movement 

 Load, Store, Move 

 Compare and branch 

 Compare, Test, If-then, Branch, compare and branch on zero 

 Miscellaneous 

 Breakpoints, wait for events, interrupt enable/disable, data 

memory barrier, data synchronization barrier 



ARM Instruction Format 
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label  mnemonic operand1, operand2, operand3    ; comments 

 Label is a reference to the memory address of this instruction.  

 Mnemonic represents the operation to be performed. 

 The number of operands varies, depending on each specific instruction. 

Some instructions have no operands at all.  

 Typically, operand1 is the destination register, and operand2 and operand3 are 

source operands.  

 operand2 is usually a register.  

 operand3 may be a register, an immediate number, a register shifted to a 

constant amount of bits, or a register plus an offset (used for memory access).  

 Everything after the semicolon “;” is a comment, which is an annotation 

explicitly declaring programmers’ intentions or assumptions.  

 



ARM Instruction Format 
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label mnemonic operand1, operand2, operand3    ; comments 

target   ADD r0, r2, r3  ; r0 = r2 + r3 

label mnemonic comment destination 

operand 

2nd source 

operand 

1st source 

operand 



ARM Instruction Format 
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label  mnemonic operand1, operand2, operand3    ; comments 

Examples:  Variants of the ADD instruction 

 ADD r1, r2, r3    ; r1 = r2 + r3 

 ADD r1, r3        ; r1 = r1 + r3 

 ADD r1, r2, #4    ; r1 = r2 + 4 

 ADD r1, #15       ; r1 = r1 + 15 



First Assembly 
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First Assembly 
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First Assembly 
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Assembly Directives 
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AREA Make a new block of data or code 
ENTRY Declare an entry point where the program execution starts 
ALIGN Align data or code to a particular memory boundary 
DCB Allocate one or more bytes (8 bits) of data 
DCW Allocate one or more half-words (16 bits) of data 
DCD Allocate one or more words (32 bits) of data 
SPACE Allocate a zeroed block of memory with a particular size 
FILL Allocate a block of memory and fill with a given value. 
EQU Give a symbol name to a numeric constant 
RN Give a symbol name to a register 
EXPORT Declare a symbol and make it referable by other source files 
IMPORT Provide a symbol defined outside the current source file 
INCLUDE/GET Include a separate source file within the current source file 
PROC Declare the start of a procedure 
ENDP Designate the end of a procedure 
END Designate the end of a source file 

 Directives are NOT instruction. Instead, they are used to 

provide key information for assembly. 



Directive:  AREA 
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  AREA myData, DATA, READWRITE ; Define a data section 
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers 
  
  AREA myCode, CODE, READONLY  ; Define a code section 
  EXPORT  __main               ; Make __main visible to the linker 
  ENTRY                        ; Mark the entrance to the entire program 
__main  PROC                         ; PROC marks the begin of a subroutine    
  ...                          ; Assembly program starts here. 
  ENDP                         ; Mark the end of a subroutine 
  END                          ; Mark the end of a program 

 The AREA directive indicates to the assembler the start of a new data or code section.  

 Areas are the basic independent and indivisible unit processed by the linker.  

 Each area is identified by a name and areas within the same source file cannot share the 

same name.   

 An assembly program must have at least one code area.  

 By default, a code area can only be read (READONLY) and a data area may be read from 

and written to (READWRITE).  

 



Directive:  ENTRY 
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  AREA myData, DATA, READWRITE ; Define a data section 
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers 
  
  AREA myCode, CODE, READONLY  ; Define a code section 
  EXPORT  __main               ; Make __main visible to the linker 
  ENTRY                        ; Mark the entrance to the entire program 
__main  PROC                         ; PROC marks the begin of a subroutine    
  ...                          ; Assembly program starts here. 
  ENDP                         ; Mark the end of a subroutine 
  END                          ; Mark the end of a program 

 The ENTRY directive marks the first instruction to be executed within an application 

program.  

 There must be exactly one ENTRY directive in an application, no matter how many 

source files the application has.  



Directive:  END 
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  AREA myData, DATA, READWRITE ; Define a data section 
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers 
  
  AREA myCode, CODE, READONLY  ; Define a code section 
  EXPORT  __main               ; Make __main visible to the linker 
  ENTRY                        ; Mark the entrance to the entire program 
__main  PROC                         ; PROC marks the begin of a subroutine    
  ...                          ; Assembly program starts here. 
  ENDP                         ; Mark the end of a subroutine 
  END                          ; Mark the end of a program 

 The END directive indicates the end of a source file.  

 Each assembly program must end with this directive. 



Directive:  PROC and ENDP 
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  AREA myData, DATA, READWRITE ; Define a data section 
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers 
  
  AREA myCode, CODE, READONLY  ; Define a code section 
  EXPORT  __main               ; Make __main visible to the linker 
  ENTRY                        ; Mark the entrance to the entire program 
__main  PROC                         ; PROC marks the begin of a subroutine    
  ...                          ; Assembly program starts here. 
  ENDP                         ; Mark the end of a subroutine 
  END                          ; Mark the end of a program 

 PROC and ENDP are to mark the start and end of a function (also called subroutine or 

procedure).  

 A single source file can contain multiple subroutines, with each of them defined by a pair 

of PROC and ENDP.  

 PROC and ENDP cannot be nested. We cannot define a function within another function. 



Directive:  EXPORT and IMPORT 
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  AREA myData, DATA, READWRITE ; Define a data section 
Array  DCD 1, 2, 3, 4, 5            ; Define an array with five integers 
  
  AREA myCode, CODE, READONLY  ; Define a code section 
  EXPORT  __main               ; Make __main visible to the linker 
  ENTRY                        ; Mark the entrance to the entire program 
__main  PROC                         ; PROC marks the begin of a subroutine    
  ...                          ; Assembly program starts here. 
  ENDP                         ; Mark the end of a subroutine 
  END                          ; Mark the end of a program 

 The EXPORT declares a symbol and makes this symbol visible to the linker.  

 The IMPORT gives the assembler a symbol that is not defined locally in the current 

assembly file.  The symbol must be defined in another file. 

 The IMPORT is similar to the “extern” keyword in C. 



Directive:  Data Allocation 
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Directive Description Memory Space 

DCB Define Constant Byte Reserve 8-bit values 

DCW Define Constant Half-word Reserve 16-bit values 

DCD Define Constant Word Reserve 32-bit values 

DCQ Define Constant  Reserve 64-bit values 

DCFS Define single-precision 

floating-point numbers 

Reserve 32-bit values 

DCFD Define double-precision 

floating-point numbers 

Reserve 64-bit values 

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes 

FILL Defined Initialized Bytes Reserve and fill each byte with a value 



Directive:  Data Allocation 
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 AREA   myData, DATA, READWRITE 
hello   DCB   "Hello World!",0  ; Allocate a string that is null-terminated 
 
dollar  DCB   2,10,0,200        ; Allocate integers ranging from -128 to 255 
 
scores  DCD   2,3.5,-0.8,4.0    ; Allocate 4 words containing decimal values 
 
miles   DCW   100,200,50,0      ; Allocate integers between –32768 and 65535 
 
Pi      DCFS  3.14              ; Allocate a single-precision floating number 
 
Pi      DCFD  3.14              ; Allocate a double-precision floating number 
 
p       SPACE 255               ; Allocate 255 bytes of zeroed memory space 
 
f       FILL  20,0xFF,1         ; Allocate 20 bytes and set each byte to 0xFF 
 
binary  DCB   2_01010101        ; Allocate a byte in binary 
 
octal   DCB   8_73              ; Allocate a byte in octal 
 
char    DCB   ‘A’               ; Allocate a byte initialized to ASCII of ‘A’ 



Directive: EQU and RN 
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 The EQU directive associates a symbolic name to a numeric constant. Similar to the 

use of #define in a C program, the EQU can be used to define a constant in an 

assembly code.  

 The RN directive gives a symbolic name to a specific register.  

; Interrupt Number Definition (IRQn) 
BusFault_IRQn   EQU  -11        ; Cortex-M3 Bus Fault Interrupt                        
SVCall_IRQn     EQU   -5        ; Cortex-M3 SV Call Interrupt                         
PendSV_IRQn     EQU   -2        ; Cortex-M3 Pend SV Interrupt                         
SysTick_IRQn    EQU   -1        ; Cortex-M3 System Tick Interrupt 
 
Dividend        RN    6         ; Defines dividend for register 6 
Divisor         RN    5         ; Defines divisor for register 5 



Directive: ALIGN 
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    AREA example, CODE, ALIGN = 3  ; Memory address begins at a multiple of 8 
    ADD r0, r1, r2                 ; Instructions start at a multiple of 8 
 
    AREA myData, DATA, ALIGN = 2   ; Address starts at a multiple of four 
a   DCB 0xFF                       ; The first byte of a 4-byte word 
    ALIGN 4, 3                     ; Align to the last byte (3) of a word (4) 
b   DCB 0x33                       ; Set the fourth byte of a 4-byte word 
c   DCB 0x44                       ; Add a byte to make next data misaligned 
    ALIGN                          ; Force the next data to be aligned 
d   DCD 12345                      ; Skip three bytes and store the word 



Directive: INCLUDE or GET 
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 The INCLUDE or GET directive is to include an assembly source file within 

another source file.  

 It is useful to include constant symbols defined by using EQU and stored in a 

separate source file.  

  INCLUDE constants.s       ; Load Constant Definitions 
  AREA main, CODE, READONLY 
  EXPORT  __main             
  ENTRY                      
__main  PROC                       
  ... 
  ENDP                       
  END  


