Embedded Systems with ARM Cortex-M Microcontrollers
in Assembly Language and C

Chapter 3
ARM Instruction Set Architecture

Dr. Yifeng Zhu
Electrical and Computer Engineering
University of Maine

Spring 2018

I Thumb/
Thumb-2/
Thumb-2/ ARMG4
Thumb/ARM32 ARM32
ARMv1 ARMy2 ARMv3 ARMv4/vAT ARMVS ARMvVE ARMV7 ARMvS
1985 1986 1993 1995 1998 2002 2004 2013 >
T A S
Cort
ARM1 ARM2 ARM8 ARMY ARM ARM ARM Cortex pore
TDMI 946E 10 11 M3 | | Cortex
ARM9 Cortex | M4
TOMI R4 Cortex
Cortex AS0
AB/A9

ARM Cortex Processors

» ARM Cortex-A family:

» Applications processors

» Support OS and high-
performance applications

» Such as Smartphones, Smart TV

» ARM Cortex-R family:

» Real-time processors with high
performance and high reliability

» Support real-time processing and
mission-critical control

» ARM Cortex-M family:

» Microcontroller

» Cost-sensitive, support SoC

Instruction Sets

Thumb-2
(16-tit and 32-bitinstructions)

Cortex-Md

Cortex-M3
ARM

Cortex-M0 (32-0itInstructions|

Thumb
(16-oi
Instructions)

Instruction Sets

SHSAX

IS GRS GEIIIED GEITED GECEED GKIITED
DD GEETED GEIIED GEEITED GEESIED

SMLATT

cDP
CMP
LDMIA EE@) (Aoc) (AbD) (ADR)
LDRBT [Bx J cPS (a0) (AasR)(B)

LDREXH C BL

(cmn) (cmP) (EOR)

(CtorR) (torB) (oM)

(LDRH) (LDRSB) (LDRSH)

J(BIC)

LDRSBT
CR

CLREX

0
m
=
N

LDMDB LDR
LDRD

LDRH

LDREX
LDRHT
LDRSHT LDRSH

S|

-

=
w0
2

SHADD3
SMLAD
SMLALBT
SMLALTT
SMLAWB
SMLSD
SMMLA
SMMUL
SMULEBB
SMULTB
SMULWB

SHASX
SMLALBB
SMLALTE

SMLALD
SMLAWT
SMLSLD
SMMLS
SMUAD
SMULBT
SMULTT
SMULWT
SSAT16

___LDMA
CE3T
CEET D
.
&=
=D
COEO) | D G T
D | D G GviD) Corn) | QD G5 SsuBs SXTAB
CFor) (Fusm) (Ror) D D
Cre) Cee) 57 SXTB16 UADD16
[RoR G Gr) Gr) | D LD
([wri-] CORTEX-MO/M1 UHASX
GECTED UQADDS UORSX
GEZED G UQsAX LQsUB1s
D GETEED CORTEX-M3 UasUBS UsADs
USADAS USAT16
Cortex-M4
(VABS I(VADD) VCMP J(VCMPE I VCVT J(VCVIR) (VDIV I (VLDM I (VLDR)
"""" (VMLA) (VMLS) (VMOV R VMRS) (VMSR) (VMUL) (VNEG) (VNMLA) (VNMLS)
} 5 (. wNmuL) VPOP Y vPusH) VSQRT) (VSTM) C VSTR I VSUB) Cortex-M4F

from arm.com

From C to Assembly

C Program

int x = -2;
X =X + 1;

Task: Compute
-2 + 1

Assembly program

AREA c,CODE

LDR r@, =x @
LDR r1,[re] @
ADD r1, rl, #1 @
STR r1,[re] @

AREA d,DATA
X DCW -2

Microprocessor

Load-Modify-Store

Assembly program

AREA c¢,CODE

C Program F—i' DR r@, =x
&| LDR r1,[re]
Y\ ©
4
M

ADD rl, rl, #1
STR rl,[r8]

int x = =-2; |
¥ = X + 1; —

AREA d,DATA
™ x DCW -1

Load- Modlfy Store

o =
= ——

Lo Save 32-bit data in Tl
P @ register R1 into memory. TTe—
! e
Ii - -~ -
| 32 bits @ RO holds the memory S
\ - - address of variable x. S
_R0[ex20000000 |-~ """ @ R1=R1+1 T~ *
At
R1- @xFFFFFFFE | Memory \
R2 A I f' address /\/\ "l
- |
3% i AL ;f €x20000004 | Ox00 |
R4 AN If x20000003 | OXFF “} /!
RS o1 — | 0x20000002 | OXFF | 1 o
.
R6 . _| ex2eeeece1 | OxFF | "
R7 o ™ ©x20000000 [OXFE | | |
R8 loo~ '.
R9 K N
R10 Pl Ay :
O o 3 2] I
R11 SR /
& ~~ 8 bits
R12 7 ~h o s
R13 (SP) TTmm et
Control Unit
R14 (LR} Data Memory
R15 (PC)
Processor Core

ARM Cortex-M3 Organization (STM32L1)

Interrupts

Cortex-M3 Processor Core

A 4
Interrupt Controller
(NVIC)

Trace & Debug
Interface
Processor Control
Unit
ALU
Instruction Decoder

Instruction Fetch Unit

SWIHTAG LCD SPI2
TIM2 12C1
TIM4 12C2
Instructions TIM6 USB 2.0 FS
¢————p Flash TIM7 DAC1
Instruction Bus Memory USART2 DAC?2
> ' Data USART3 USB RAM
S & Memory % |¢———| SRAM WWDG
5% Protection =
=< Unit (MPU) S | Advanced High- A
| @ | performance Bus
e > APB1
Data Bus g < (AHB) AHB t0 APB Bridge 1 |«m—
Z| A AHB t0 APB Bridge 2 e
< > ABP2
System Bus ¢
GPIO Port A
Direction Memory or WKUP TIM9
GPIO Port D
Access (DMA) GPIO Port E SPI1 TIM10
Controller < GPIO Port H USART1 TIM11

System-on-a-chip

Advanced
Peripheral Bus
(APB)

ARM Cortex-M4 Organization (STM32L4)

INTEMTUPLS commtp

Cortex-M4 Processor Core

o _ —
3]) c O
= o S |20
o > c = 0
= 2 oo 2=
c o~ L o O 2 ®©
o0 Oo|=2|= &
(ORS = = |
> I gle c 0
— (/)D—
o Z = ©
~— c QO —
=] Q=0 - a
= @© o)=
o = o ==
3] = o |c
— U):j
= o =

FPU (optional)

ALU

Instruction Decoder

Instruction Fetch Unit

LCD SPI2
TIM2 SPI3
TIM3 12C1/SMBUS
SWHTAG TIM4 12C2/SMBUS
A TIM6 12C3/SMBUS
TIM7 USB2.0FS
> Instructions Flash USART2 bxCAN
. Memor USART3 SWPMI1
Instruction Bus y USART4 LPTIML
8 W | Data USART5 LPTIM2
o8 emory X | —p| SRAM LPUART1 OpAmp
5o Protection =
=E Unit (MPU) = | Advanced High- A
| 4 | performance Bus APB1
Data Bus @ (AHB) AHB t0 APB Bridge 1 |emm— Advanced
2 <A s AHB 10 APB Bridae 2 Peripheral Bus
to ridge 2 («emm—
- > g ABP2 (APB)
System Bus
GPIO Port A
. . ort C
Direction Memory |- GPIO Port D WKUP SAIl
Access (DMA) GPIO Port E TIM1/PWM SAI2
Controllers - GPIO Port F TIM8/PWM DESDM
GPIO Port G TIM15 COMP1
GPIO Port H TIM16 COMP2
TIM17 Firewall
USART1
System-on-a-chip

Assembly Instructions Supported

» Arithmetic and logic
» Add, Subtract, Multiply, Divide, Shift, Rotate
» Data movement
» Load, Store, Move
» Compare and branch
» Compare, Test, If-then, Branch, compare and branch on zero
» Miscellaneous

» Breakpoints, wait for events, interrupt enable/disable, data
memory barrier, data synchronization barrier

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

» Label is a reference to the memory address of this instruction.

» Mnemonic represents the operation to be performed.

» The number of operands varies, depending on each specific instruction.
Some instructions have no operands at all.

» Typically, operand| is the destination register, and operand2 and operand3 are
source operands.

» operand? is usually a register.

» operand3 may be a register, an immediate number, a register shifted to a
constant amount of bits, or a register plus an offset (used for memory access).

TR}

» Everything after the semicolon “;” is a comment, which is an annotation
explicitly declaring programmers’ intentions or assumptions.

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

target ADD ro, r =r2 + r3

7T N

label mnemonic destination |5t source 2" source comment
operand operand operand

ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

Examples: Variants of the ADD instruction

ADD rl1, r2, r3 ; Pl =r2 + r3
ADD rl1, r3 ; Pl =rl1l + r3
ADD rl1, r2, #4 ; rl =r2 + 4
ADD rl1, #15 ; rl =rl + 15

First Assembly

4 AREA string copy, CODE, READONLY
EXPORT _ main
ALIGN
ENTRY
__main PROC

Retrieve address of the source string
Retrieve address of the destination string
Load a byte & increase src address pointer
Store a byte & increase dst address pointer
Check for the null terminator

strcpy LDR rl, =srcStr

Code
< LDR re@, =dstStr
loop LDRB r2, [ri1], #1
STRB r2, [ro], #1

CMP r2, #0

e W We Wwe W

BNE loop ; Copy the next byte if string is not ended
stop B stop ; Dead loop. Embedded program never exits.
_ ENDP
a AREA myData, DATA, READWRITE
ALIGN
srcStr DCB "The source string.",® ; Strings are null terminated
dstStr DCB "The destination string.",0 ; dststr has more space than srcstr
END

First Assembly

q AREA string_copy, CODE, READONLY
EXPORT _ main
ENTRY -
~_main PROC rad
________ A
Code strcpy LDR rl1, =srcStr ; Retrieve address of the source string |
< LDR re, =dstStr | ; Retrieve address of the destination string |
loop LDRB r2, [rl], #1 | 5 Load a byte & increase src address pointer |
STRB r2, [ro], #1 | 3 Store a byte & increase dst address pointer
CMP r2, #o ; Check for the null terminator |
BNE loop |_; Copy the next byte if string is not ended |
stop B stop |; Dead loop. Embedded program never exits. |
\d ENDP
(] AREA myData, DATA, READWRITE
ALIGN
|_ _____________ =
srcStr DCB "The source string.",0 ; Strings are null terminated |
dstStr DCB "The destination string.",@ l; dststr has more space than srcstr'l
u END _f
|

First Assembly

I
: [AREA string_copy, CODE, READONLY |
! | EXPORT __main | rmp——
Ay AR Decives
v ENTRY s
__main |PROC | -7

- -
-

-

-

Code strcpy ['LDR rl, =srcStr | ; Retrieve address of the source string
Area < | LDR re, =dstStr ; Retrieve address of the destination string
loop |LDRB r2, [rl], #1 | ; Load a byte & increase src address pointer
STRB r2, [re], #1 | ; Store a byte & increase dst address pointer
|
|

ICMP r2, #0 ; Check for the null terminator

| BNE loop ; Copy the next byte if string is not ended
stop B __ stop _ _ _ __ ; Dead loop. Embedded program never exits.
kel 2 Assembly Instructions
\ [EnDP |
1 B8 oiciver
|AREA myData, DATA, READWRITE

|
LALIGN

—_—— — — — — — — — — —

gata < |srcstr [DcB _'Fhe_sal;e_st?irg.r,e_ o ﬁ| ; Strings are null terminated
rea dstStr | DCB "The destination str‘ing.",@J ; dststr has more space than srcstr
______ AT T T T T — A
[
[
|

Program
Comments

Assembly Directives

» Directives are NOT instruction. Instead, they are used to
provide key information for assembly.

AREA Make a new block of data or code

ENTRY Declare an entry point where the program execution starts
ALIGN Align data or code to a particular memory boundary

DCB Allocate one or more bytes (8 bits) of data

DCW Allocate one or more half-words (16 bits) of data

DCD Allocate one or more words (32 bits) of data

SPACE Allocate a zeroed block of memory with a particular size
FILL Allocate a block of memory and fill with a given value.
EQU Give a symbol name to a numeric constant

RN Give a symbol name to a register

EXPORT Declare a symbol and make it referable by other source files
IMPORT Provide a symbol defined outside the current source file
INCLUDE/GET |Include a separate source file within the current source file
PROC Declare the start of a procedure

ENDP Designate the end of a procedure

END Designate the end of a source file

Directive: AREA

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The AREA directive indicates to the assembler the start of a new data or code section.
» Areas are the basic independent and indivisible unit processed by the linker.

» Each area is identified by a name and areas within the same source file cannot share the
same name.

» An assembly program must have at least one code area.

» By default,a code area can only be read (READONLY) and a data area may be read from
and written to (READWRITE).

Directive: ENTRY

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The ENTRY directive marks the first instruction to be executed within an application
program.

» There must be exactly one ENTRY directive in an application, no matter how many
source files the application has.

Directive: END

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The END directive indicates the end of a source file.

» Each assembly program must end with this directive.

Directive: PROC and ENDP

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» PROC and ENDP are to mark the start and end of a function (also called subroutine or
procedure).

» A single source file can contain multiple subroutines, with each of them defined by a pair
of PROC and ENDP.

» PROC and ENDP cannot be nested.We cannot define a function within another function.

Directive: EXPORT and IMPORT

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ _main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The EXPORT declares a symbol and makes this symbol visible to the linker.

» The IMPORT gives the assembler a symbol that is not defined locally in the current
assembly file. The symbol must be defined in another file.

» The IMPORT is similar to the “extern” keyword in C.

Directive: Data Allocation

Directive Description Memory Space

DCB Define Constant Byte Reserve 8-bit values

DCW Define Constant Half-word | Reserve 16-bit values

DCD Define Constant Word Reserve 32-bit values

DCQ Define Constant Reserve 64-bit values

DCFS Define single-precision Reserve 32-bit values
floating-point numbers

DCFD Define double-precision Reserve 64-bit values
floating-point numbers

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes

FILL Defined Initialized Bytes Reserve and fill each byte with a value

Directive: Data Allocation

AREA
hello

dollar
scores
miles
Pi

Pi

binary
octal

char

myData, DATA, READWRITE
DCB "Hello World!",0

DCB 2,10,0,200

DCD 2,3.5,-0.8,4.0
DCW 100,200,50,0
DCFS 3.14

DCFD 3.14

SPACE 255

FILL 20,0xFF,1

DCB 2 01010101

DCB 8 73

DCB ‘A’

; Allocate a string that is null-terminated

; Allocate integers ranging from -128 to 255
; Allocate 4 words containing decimal values
; Allocate integers between -32768 and 65535
; Allocate a single-precision floating number
; Allocate a double-precision floating number
; Allocate 255 bytes of zeroed memory space

; Allocate 20 bytes and set each byte to OxFF
; Allocate a byte in binary

; Allocate a byte in octal

; Allocate a byte initialized to ASCII of ‘A’

Directive: EQU and RN

; Interrupt Number Definition (IRQn)

BusFault IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt
SVCall IRQn EQU -5 ; Cortex-M3 SV Call Interrupt
PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt
SysTick IRQn EQU -1 ; Cortex-M3 System Tick Interrupt
Dividend RN 6 ; Defines dividend for register 6
Divisor RN 5 ; Defines divisor for register 5

» The EQU directive associates a symbolic name to a numeric constant. Similar to the
use of #define in a C program, the EQU can be used to define a constant in an
assembly code.

» The RN directive gives a symbolic name to a specific register.

Directive: ALIGN

AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8
ADD ro, ri, r2 ; Instructions start at a multiple of 8

AREA myData, DATA, ALIGN = 2 ; Address starts at a multiple of four

DCB OxFF ; The first byte of a 4-byte word

ALIGN 4, 3 ; Align to the last byte (3) of a word (4)
DCB ©0x33 ; Set the fourth byte of a 4-byte word

DCB ox44 ; Add a byte to make next data misaligned
ALIGN ; Force the next data to be aligned

DCD 12345 ; Skip three bytes and store the word

Directive: INCLUDE or GET

INCLUDE constants.s ; Load Constant Definitions
AREA main, CODE, READONLY
EXPORT _ main
ENTRY
__main PROC
ENDP
END

» The INCLUDE or GET directive is to include an assembly source file within
another source file.

» It is useful to include constant symbols defined by using EQU and stored in a
separate source file.

