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ARM Cortex Processors

» ARM Cortex-A family:

» Applications processors

» Support OS and high-
performance applications

» Such as Smartphones, Smart TV

» ARM Cortex-R family:

» Real-time processors with high
performance and high reliability

» Support real-time processing and
mission-critical control

» ARM Cortex-M family:

» Microcontroller

» Cost-sensitive, support SoC
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Instruction Sets
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From C to Assembly

C Program

int x = -2;
X =X + 1;

Task: Compute
-2 + 1

Assembly program

AREA c,CODE

LDR r@, =x @
LDR r1,[re] @
ADD r1, rl, #1 @
STR r1,[re] @

AREA d,DATA
X DCW -2

Microprocessor




Load-Modify-Store

Assembly program

AREA c¢,CODE

C Program F—i' DR r@, =x
&| LDR r1,[re]
Y\ ©
4
M

ADD rl, rl, #1
STR rl,[r8]

int x = =-2; |
¥ = X + 1; —

AREA d,DATA
™ x DCW -1




Load- Modlfy Store
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ARM Cortex-M3 Organization (STM32L1)
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ARM Cortex-M4 Organization (STM32L4)
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Assembly Instructions Supported

» Arithmetic and logic
» Add, Subtract, Multiply, Divide, Shift, Rotate
» Data movement
» Load, Store, Move
» Compare and branch
» Compare, Test, If-then, Branch, compare and branch on zero
» Miscellaneous

» Breakpoints, wait for events, interrupt enable/disable, data
memory barrier, data synchronization barrier



ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

» Label is a reference to the memory address of this instruction.

» Mnemonic represents the operation to be performed.

» The number of operands varies, depending on each specific instruction.
Some instructions have no operands at all.

» Typically, operand| is the destination register, and operand2 and operand3 are
source operands.

» operand? is usually a register.

» operand3 may be a register, an immediate number, a register shifted to a
constant amount of bits, or a register plus an offset (used for memory access).

TR}

» Everything after the semicolon “;” is a comment, which is an annotation
explicitly declaring programmers’ intentions or assumptions.



ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

target ADD ro, r =r2 + r3

7T N

label mnemonic destination |5t source 2" source comment
operand operand operand



ARM Instruction Format

label mnemonic operandl, operand2, operand3 ; comments

Examples: Variants of the ADD instruction

ADD rl1, r2, r3 ; Pl =r2 + r3
ADD rl1, r3 ; Pl =rl1l + r3
ADD rl1, r2, #4 ; rl =r2 + 4
ADD rl1, #15 ; rl =rl + 15



First Assembly

4 AREA string copy, CODE, READONLY
EXPORT _ main
ALIGN
ENTRY
__main PROC

Retrieve address of the source string
Retrieve address of the destination string
Load a byte & increase src address pointer
Store a byte & increase dst address pointer
Check for the null terminator

strcpy LDR rl, =srcStr

Code
< LDR re@, =dstStr
loop LDRB r2, [ri1], #1
STRB r2, [ro], #1

CMP  r2, #0

e W We Wwe W

BNE  loop ; Copy the next byte if string is not ended
stop B stop ; Dead loop. Embedded program never exits.
_ ENDP
a AREA myData, DATA, READWRITE
ALIGN
srcStr DCB "The source string.",® ; Strings are null terminated
dstStr DCB "The destination string.",0 ; dststr has more space than srcstr
END




First Assembly

q AREA string_copy, CODE, READONLY
EXPORT _ main
ENTRY -
~_main PROC rad
________ A
Code strcpy LDR  rl1, =srcStr ; Retrieve address of the source string |
< LDR re, =dstStr | ; Retrieve address of the destination string |
loop LDRB r2, [rl], #1 | 5 Load a byte & increase src address pointer |
STRB r2, [ro], #1 | 3 Store a byte & increase dst address pointer
CMP r2, #o ; Check for the null terminator |
BNE  loop |_; Copy the next byte if string is not ended |
stop B stop |; Dead loop. Embedded program never exits. |
\d ENDP
(] AREA myData, DATA, READWRITE
ALIGN
|_ _____________ =
srcStr DCB "The source string.",0 ; Strings are null terminated |
dstStr DCB "The destination string.",@ l; dststr has more space than srcstr'l
u END _f
|




First Assembly

I
: [ AREA string_copy, CODE, READONLY |
! | EXPORT __main | rmp——
Ay AR Decives
v ENTRY s
__main |PROC | -7

- -
-

-

-

Code strcpy ['LDR rl, =srcStr | ; Retrieve address of the source string
Area < | LDR re, =dstStr ; Retrieve address of the destination string
loop |LDRB r2, [rl], #1 | ; Load a byte & increase src address pointer
STRB r2, [re], #1 | ; Store a byte & increase dst address pointer
|
|

ICMP r2, #0 ; Check for the null terminator

| BNE loop ; Copy the next byte if string is not ended
stop B __ stop _ _ _ __ ; Dead loop. Embedded program never exits.
kel 2 Assembly Instructions
\ [ EnDP |
1 B8 oiciver
|AREA myData, DATA, READWRITE

|
LALIGN

—_—— — — — — — — — — —

gata < |srcstr [DcB _'Fhe_sal;e_st?irg.r,e_ o ﬁ| ; Strings are null terminated
rea dstStr | DCB "The destination str‘ing.",@J ; dststr has more space than srcstr
______ AT T T T T — A
[
[
|

Program
Comments




Assembly Directives

» Directives are NOT instruction. Instead, they are used to
provide key information for assembly.

AREA Make a new block of data or code

ENTRY Declare an entry point where the program execution starts
ALIGN Align data or code to a particular memory boundary

DCB Allocate one or more bytes (8 bits) of data

DCW Allocate one or more half-words (16 bits) of data

DCD Allocate one or more words (32 bits) of data

SPACE Allocate a zeroed block of memory with a particular size
FILL Allocate a block of memory and fill with a given value.
EQU Give a symbol name to a numeric constant

RN Give a symbol name to a register

EXPORT Declare a symbol and make it referable by other source files
IMPORT Provide a symbol defined outside the current source file
INCLUDE/GET |Include a separate source file within the current source file
PROC Declare the start of a procedure

ENDP Designate the end of a procedure

END Designate the end of a source file




Directive: AREA

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The AREA directive indicates to the assembler the start of a new data or code section.
» Areas are the basic independent and indivisible unit processed by the linker.

» Each area is identified by a name and areas within the same source file cannot share the
same name.

» An assembly program must have at least one code area.

» By default,a code area can only be read (READONLY) and a data area may be read from
and written to (READWRITE).




Directive: ENTRY

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The ENTRY directive marks the first instruction to be executed within an application
program.

» There must be exactly one ENTRY directive in an application, no matter how many
source files the application has.




Directive: END

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The END directive indicates the end of a source file.

» Each assembly program must end with this directive.




Directive: PROC and ENDP

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» PROC and ENDP are to mark the start and end of a function (also called subroutine or
procedure).

» A single source file can contain multiple subroutines, with each of them defined by a pair
of PROC and ENDP.

» PROC and ENDP cannot be nested.We cannot define a function within another function.




Directive: EXPORT and IMPORT

AREA myData, DATA, READWRITE ; Define a data section
Array pcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section

EXPORT _ _main ; Make _ main visible to the linker

ENTRY ; Mark the entrance to the entire program
__main PROC 5 PROC marks the begin of a subroutine

e ; Assembly program starts here.

ENDP ; Mark the end of a subroutine

END ; Mark the end of a program

» The EXPORT declares a symbol and makes this symbol visible to the linker.

» The IMPORT gives the assembler a symbol that is not defined locally in the current
assembly file. The symbol must be defined in another file.

» The IMPORT is similar to the “extern” keyword in C.




Directive: Data Allocation

Directive Description Memory Space

DCB Define Constant Byte Reserve 8-bit values

DCW Define Constant Half-word | Reserve 16-bit values

DCD Define Constant Word Reserve 32-bit values

DCQ Define Constant Reserve 64-bit values

DCFS Define single-precision Reserve 32-bit values
floating-point numbers

DCFD Define double-precision Reserve 64-bit values
floating-point numbers

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes

FILL Defined Initialized Bytes Reserve and fill each byte with a value




Directive: Data Allocation

AREA
hello

dollar
scores
miles
Pi

Pi

binary
octal

char

myData, DATA, READWRITE
DCB "Hello World!",0

DCB  2,10,0,200

DCD  2,3.5,-0.8,4.0
DCW  100,200,50,0
DCFS 3.14

DCFD 3.14

SPACE 255

FILL 20,0xFF,1

DCB 2 01010101

DCB 8 73

DCB ‘A’

; Allocate a string that is null-terminated

; Allocate integers ranging from -128 to 255
; Allocate 4 words containing decimal values
; Allocate integers between -32768 and 65535
; Allocate a single-precision floating number
; Allocate a double-precision floating number
; Allocate 255 bytes of zeroed memory space

; Allocate 20 bytes and set each byte to OxFF
; Allocate a byte in binary

; Allocate a byte in octal

; Allocate a byte initialized to ASCII of ‘A’




Directive: EQU and RN

; Interrupt Number Definition (IRQn)

BusFault IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt
SVCall IRQn EQU -5 ; Cortex-M3 SV Call Interrupt
PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt
SysTick IRQn EQU -1 ; Cortex-M3 System Tick Interrupt
Dividend RN 6 ; Defines dividend for register 6
Divisor RN 5 ; Defines divisor for register 5

» The EQU directive associates a symbolic name to a numeric constant. Similar to the
use of #define in a C program, the EQU can be used to define a constant in an
assembly code.

» The RN directive gives a symbolic name to a specific register.



Directive: ALIGN

AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8
ADD ro, ri, r2 ; Instructions start at a multiple of 8

AREA myData, DATA, ALIGN = 2 ; Address starts at a multiple of four

DCB OxFF ; The first byte of a 4-byte word

ALIGN 4, 3 ; Align to the last byte (3) of a word (4)
DCB ©0x33 ; Set the fourth byte of a 4-byte word

DCB ox44 ; Add a byte to make next data misaligned
ALIGN ; Force the next data to be aligned

DCD 12345 ; Skip three bytes and store the word




Directive: INCLUDE or GET

INCLUDE constants.s ; Load Constant Definitions
AREA main, CODE, READONLY
EXPORT _ main
ENTRY
__main PROC
ENDP
END

» The INCLUDE or GET directive is to include an assembly source file within
another source file.

» It is useful to include constant symbols defined by using EQU and stored in a
separate source file.



