
Dr. Yifeng Zhu

Electrical and Computer Engineering

University of Maine

Spring 2018

Embedded Systems with ARM Cortex-M Microcontrollers

in Assembly Language and C

Chapter 3

ARM Instruction Set Architecture

1

History

2

ARM Cortex Processors

3

 ARM Cortex-A family:

 Applications processors

 Support OS and high-

performance applications

 Such as Smartphones, Smart TV

 ARM Cortex-R family:

 Real-time processors with high

performance and high reliability

 Support real-time processing and

mission-critical control

 ARM Cortex-M family:

 Microcontroller

 Cost-sensitive, support SoC

Instruction Sets

4

Instruction Sets

5
from arm.com

From C to Assembly

6

Load-Modify-Store

7

Load-Modify-Store

8

ARM Cortex-M3 Organization (STM32L1)

9

System-on-a-chip

Instructions

System Bus

In
te

rr
u

p
t

C
o

n
tr

o
ll
e

r

(N
V

IC
)

Memory

Protection

Unit (MPU)

Instruction Bus

Data Bus

Interrupts

`
M

e
m

o
ry

In
te

rf
a

c
e

Cortex-M3 Processor Core

SW/JTAG

In
s

tr
u

c
ti

o
n

 F
e

tc
h

 U
n

it

In
s

tr
u

c
ti

o
n

 D
e

c
o

d
e

r

A
L

U

P
ro

c
e

s
s

o
r

C
o

n
tr

o
l

U
n

it

T
ra

c
e

 &
 D

e
b

u
g

In
te

rf
a

c
e

Flash

Memory

AHB to APB Bridge 1

AHB to APB Bridge 2

APB1

ABP2

LCD

TIM2

TIM4

TIM6

TIM7

USART2

USART3

SPI2

I2C1

I2C2

USB 2.0 FS

DAC1

DAC2

USB RAM

WWDG

GPIO Port A

GPIO Port B

GPIO Port C

GPIO Port D

GPIO Port E

GPIO Port H

EXT

WKUP

SPI1

USART1

ADC

TIM9

TIM10

TIM11
A

H
B

 B
u

s
 M

a
tr

ix

Direction Memory

Access (DMA)

Controller

Data
SRAM

Advanced

Peripheral Bus

(APB)

Advanced High-

performance Bus

(AHB)

ARM Cortex-M4 Organization (STM32L4)

10

System-on-a-chip

Instructions

System Bus

In
te

rr
u

p
t

C
o

n
tr

o
ll
e

r

(N
V

IC
)

Memory

Protection

Unit (MPU)

Instruction Bus

Data Bus

Interrupts

`

M
e

m
o

ry

In
te

rf
a

c
e

Cortex-M4 Processor Core

SW/JTAG

In
s

tr
u

c
ti

o
n

 F
e

tc
h

 U
n

it

In
s

tr
u

c
ti

o
n

 D
e

c
o

d
e

r

A
L

U

P
ro

c
e

s
s

o
r

C
o

n
tr

o
l

U
n

it

T
ra

c
e

 &
 D

e
b

u
g

In
te

rf
a

c
e

Flash

Memory

AHB to APB Bridge 1

AHB to APB Bridge 2

APB1

ABP2

LCD

TIM2

TIM3

TIM4

TIM6

TIM7

USART2

USART3

USART4

USART5

LPUART1

SPI2

SPI3

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

USB 2.0 FS

bxCAN

SWPMI1

LPTIM1

LPTIM2

OpAmp

GPIO Port A

GPIO Port B

GPIO Port C

GPIO Port D

GPIO Port E

GPIO Port F

GPIO Port G

GPIO Port H

EXTI

WKUP

TIM1/PWM

TIM8/PWM

TIM15

TIM16

TIM17

USART1

SPI1

SAI1

SAI2

DFSDM

COMP1

COMP2

Firewall

A
H

B
 B

u
s
 M

a
tr

ix

Direction Memory

Access (DMA)

Controllers

Data
SRAM

Advanced

Peripheral Bus

(APB)

Advanced High-

performance Bus

(AHB)

F
P

U
 (

o
p

ti
o

n
a

l)

S
in

g
le

 I
n

s
tr

u
c

ti
o

n

M
u

lt
ip

le
 D

a
ta

 (
D

S
P

)

Assembly Instructions Supported

11

 Arithmetic and logic

 Add, Subtract, Multiply, Divide, Shift, Rotate

 Data movement

 Load, Store, Move

 Compare and branch

 Compare, Test, If-then, Branch, compare and branch on zero

 Miscellaneous

 Breakpoints, wait for events, interrupt enable/disable, data

memory barrier, data synchronization barrier

ARM Instruction Format

12

label mnemonic operand1, operand2, operand3 ; comments

 Label is a reference to the memory address of this instruction.

 Mnemonic represents the operation to be performed.

 The number of operands varies, depending on each specific instruction.

Some instructions have no operands at all.

 Typically, operand1 is the destination register, and operand2 and operand3 are

source operands.

 operand2 is usually a register.

 operand3 may be a register, an immediate number, a register shifted to a

constant amount of bits, or a register plus an offset (used for memory access).

 Everything after the semicolon “;” is a comment, which is an annotation

explicitly declaring programmers’ intentions or assumptions.

ARM Instruction Format

13

label mnemonic operand1, operand2, operand3 ; comments

target ADD r0, r2, r3 ; r0 = r2 + r3

label mnemonic comment destination

operand

2nd source

operand

1st source

operand

ARM Instruction Format

14

label mnemonic operand1, operand2, operand3 ; comments

Examples: Variants of the ADD instruction

 ADD r1, r2, r3 ; r1 = r2 + r3

 ADD r1, r3 ; r1 = r1 + r3

 ADD r1, r2, #4 ; r1 = r2 + 4

 ADD r1, #15 ; r1 = r1 + 15

First Assembly

15

First Assembly

16

First Assembly

17

Assembly Directives

18

AREA Make a new block of data or code
ENTRY Declare an entry point where the program execution starts
ALIGN Align data or code to a particular memory boundary
DCB Allocate one or more bytes (8 bits) of data
DCW Allocate one or more half-words (16 bits) of data
DCD Allocate one or more words (32 bits) of data
SPACE Allocate a zeroed block of memory with a particular size
FILL Allocate a block of memory and fill with a given value.
EQU Give a symbol name to a numeric constant
RN Give a symbol name to a register
EXPORT Declare a symbol and make it referable by other source files
IMPORT Provide a symbol defined outside the current source file
INCLUDE/GET Include a separate source file within the current source file
PROC Declare the start of a procedure
ENDP Designate the end of a procedure
END Designate the end of a source file

 Directives are NOT instruction. Instead, they are used to

provide key information for assembly.

Directive: AREA

19

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The AREA directive indicates to the assembler the start of a new data or code section.

 Areas are the basic independent and indivisible unit processed by the linker.

 Each area is identified by a name and areas within the same source file cannot share the

same name.

 An assembly program must have at least one code area.

 By default, a code area can only be read (READONLY) and a data area may be read from

and written to (READWRITE).

Directive: ENTRY

20

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The ENTRY directive marks the first instruction to be executed within an application

program.

 There must be exactly one ENTRY directive in an application, no matter how many

source files the application has.

Directive: END

21

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The END directive indicates the end of a source file.

 Each assembly program must end with this directive.

Directive: PROC and ENDP

22

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 PROC and ENDP are to mark the start and end of a function (also called subroutine or

procedure).

 A single source file can contain multiple subroutines, with each of them defined by a pair

of PROC and ENDP.

 PROC and ENDP cannot be nested. We cannot define a function within another function.

Directive: EXPORT and IMPORT

23

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The EXPORT declares a symbol and makes this symbol visible to the linker.

 The IMPORT gives the assembler a symbol that is not defined locally in the current

assembly file. The symbol must be defined in another file.

 The IMPORT is similar to the “extern” keyword in C.

Directive: Data Allocation

24

Directive Description Memory Space

DCB Define Constant Byte Reserve 8-bit values

DCW Define Constant Half-word Reserve 16-bit values

DCD Define Constant Word Reserve 32-bit values

DCQ Define Constant Reserve 64-bit values

DCFS Define single-precision

floating-point numbers

Reserve 32-bit values

DCFD Define double-precision

floating-point numbers

Reserve 64-bit values

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes

FILL Defined Initialized Bytes Reserve and fill each byte with a value

Directive: Data Allocation

25

 AREA myData, DATA, READWRITE
hello DCB "Hello World!",0 ; Allocate a string that is null-terminated

dollar DCB 2,10,0,200 ; Allocate integers ranging from -128 to 255

scores DCD 2,3.5,-0.8,4.0 ; Allocate 4 words containing decimal values

miles DCW 100,200,50,0 ; Allocate integers between –32768 and 65535

Pi DCFS 3.14 ; Allocate a single-precision floating number

Pi DCFD 3.14 ; Allocate a double-precision floating number

p SPACE 255 ; Allocate 255 bytes of zeroed memory space

f FILL 20,0xFF,1 ; Allocate 20 bytes and set each byte to 0xFF

binary DCB 2_01010101 ; Allocate a byte in binary

octal DCB 8_73 ; Allocate a byte in octal

char DCB ‘A’ ; Allocate a byte initialized to ASCII of ‘A’

Directive: EQU and RN

26

 The EQU directive associates a symbolic name to a numeric constant. Similar to the

use of #define in a C program, the EQU can be used to define a constant in an

assembly code.

 The RN directive gives a symbolic name to a specific register.

; Interrupt Number Definition (IRQn)
BusFault_IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt
SVCall_IRQn EQU -5 ; Cortex-M3 SV Call Interrupt
PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt
SysTick_IRQn EQU -1 ; Cortex-M3 System Tick Interrupt

Dividend RN 6 ; Defines dividend for register 6
Divisor RN 5 ; Defines divisor for register 5

Directive: ALIGN

27

 AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8
 ADD r0, r1, r2 ; Instructions start at a multiple of 8

 AREA myData, DATA, ALIGN = 2 ; Address starts at a multiple of four
a DCB 0xFF ; The first byte of a 4-byte word
 ALIGN 4, 3 ; Align to the last byte (3) of a word (4)
b DCB 0x33 ; Set the fourth byte of a 4-byte word
c DCB 0x44 ; Add a byte to make next data misaligned
 ALIGN ; Force the next data to be aligned
d DCD 12345 ; Skip three bytes and store the word

Directive: INCLUDE or GET

28

 The INCLUDE or GET directive is to include an assembly source file within

another source file.

 It is useful to include constant symbols defined by using EQU and stored in a

separate source file.

 INCLUDE constants.s ; Load Constant Definitions
 AREA main, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC
 ...
 ENDP
 END

