
Dr. Yifeng Zhu

Electrical and Computer Engineering

University of Maine

Spring 2018

Embedded Systems with ARM Cortex-M Microcontrollers

in Assembly Language and C

Chapter 3

ARM Instruction Set Architecture

1

History

2

ARM Cortex Processors

3

 ARM Cortex-A family:

 Applications processors

 Support OS and high-

performance applications

 Such as Smartphones, Smart TV

 ARM Cortex-R family:

 Real-time processors with high

performance and high reliability

 Support real-time processing and

mission-critical control

 ARM Cortex-M family:

 Microcontroller

 Cost-sensitive, support SoC

Instruction Sets

4

Instruction Sets

5
from arm.com

From C to Assembly

6

Load-Modify-Store

7

Load-Modify-Store

8

ARM Cortex-M3 Organization (STM32L1)

9

System-on-a-chip

Instructions

System Bus

In
te

rr
u

p
t

C
o

n
tr

o
ll
e

r

(N
V

IC
)

Memory

Protection

Unit (MPU)

Instruction Bus

Data Bus

Interrupts

`
M

e
m

o
ry

In
te

rf
a

c
e

Cortex-M3 Processor Core

SW/JTAG

In
s

tr
u

c
ti

o
n

 F
e

tc
h

 U
n

it

In
s

tr
u

c
ti

o
n

 D
e

c
o

d
e

r

A
L

U

P
ro

c
e

s
s

o
r

C
o

n
tr

o
l

U
n

it

T
ra

c
e

 &
 D

e
b

u
g

In
te

rf
a

c
e

Flash

Memory

AHB to APB Bridge 1

AHB to APB Bridge 2

APB1

ABP2

LCD

TIM2

TIM4

TIM6

TIM7

USART2

USART3

SPI2

I2C1

I2C2

USB 2.0 FS

DAC1

DAC2

USB RAM

WWDG

GPIO Port A

GPIO Port B

GPIO Port C

GPIO Port D

GPIO Port E

GPIO Port H

EXT

WKUP

SPI1

USART1

ADC

TIM9

TIM10

TIM11
A

H
B

 B
u

s
 M

a
tr

ix

Direction Memory

Access (DMA)

Controller

Data
SRAM

Advanced

Peripheral Bus

(APB)

Advanced High-

performance Bus

(AHB)

ARM Cortex-M4 Organization (STM32L4)

10

System-on-a-chip

Instructions

System Bus

In
te

rr
u

p
t

C
o

n
tr

o
ll
e

r

(N
V

IC
)

Memory

Protection

Unit (MPU)

Instruction Bus

Data Bus

Interrupts

`

M
e

m
o

ry

In
te

rf
a

c
e

Cortex-M4 Processor Core

SW/JTAG

In
s

tr
u

c
ti

o
n

 F
e

tc
h

 U
n

it

In
s

tr
u

c
ti

o
n

 D
e

c
o

d
e

r

A
L

U

P
ro

c
e

s
s

o
r

C
o

n
tr

o
l

U
n

it

T
ra

c
e

 &
 D

e
b

u
g

In
te

rf
a

c
e

Flash

Memory

AHB to APB Bridge 1

AHB to APB Bridge 2

APB1

ABP2

LCD

TIM2

TIM3

TIM4

TIM6

TIM7

USART2

USART3

USART4

USART5

LPUART1

SPI2

SPI3

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

USB 2.0 FS

bxCAN

SWPMI1

LPTIM1

LPTIM2

OpAmp

GPIO Port A

GPIO Port B

GPIO Port C

GPIO Port D

GPIO Port E

GPIO Port F

GPIO Port G

GPIO Port H

EXTI

WKUP

TIM1/PWM

TIM8/PWM

TIM15

TIM16

TIM17

USART1

SPI1

SAI1

SAI2

DFSDM

COMP1

COMP2

Firewall

A
H

B
 B

u
s
 M

a
tr

ix

Direction Memory

Access (DMA)

Controllers

Data
SRAM

Advanced

Peripheral Bus

(APB)

Advanced High-

performance Bus

(AHB)

F
P

U
 (

o
p

ti
o

n
a

l)

S
in

g
le

 I
n

s
tr

u
c

ti
o

n

M
u

lt
ip

le
 D

a
ta

 (
D

S
P

)

Assembly Instructions Supported

11

 Arithmetic and logic

 Add, Subtract, Multiply, Divide, Shift, Rotate

 Data movement

 Load, Store, Move

 Compare and branch

 Compare, Test, If-then, Branch, compare and branch on zero

 Miscellaneous

 Breakpoints, wait for events, interrupt enable/disable, data

memory barrier, data synchronization barrier

ARM Instruction Format

12

label mnemonic operand1, operand2, operand3 ; comments

 Label is a reference to the memory address of this instruction.

 Mnemonic represents the operation to be performed.

 The number of operands varies, depending on each specific instruction.

Some instructions have no operands at all.

 Typically, operand1 is the destination register, and operand2 and operand3 are

source operands.

 operand2 is usually a register.

 operand3 may be a register, an immediate number, a register shifted to a

constant amount of bits, or a register plus an offset (used for memory access).

 Everything after the semicolon “;” is a comment, which is an annotation

explicitly declaring programmers’ intentions or assumptions.

ARM Instruction Format

13

label mnemonic operand1, operand2, operand3 ; comments

target ADD r0, r2, r3 ; r0 = r2 + r3

label mnemonic comment destination

operand

2nd source

operand

1st source

operand

ARM Instruction Format

14

label mnemonic operand1, operand2, operand3 ; comments

Examples: Variants of the ADD instruction

 ADD r1, r2, r3 ; r1 = r2 + r3

 ADD r1, r3 ; r1 = r1 + r3

 ADD r1, r2, #4 ; r1 = r2 + 4

 ADD r1, #15 ; r1 = r1 + 15

First Assembly

15

First Assembly

16

First Assembly

17

Assembly Directives

18

AREA Make a new block of data or code
ENTRY Declare an entry point where the program execution starts
ALIGN Align data or code to a particular memory boundary
DCB Allocate one or more bytes (8 bits) of data
DCW Allocate one or more half-words (16 bits) of data
DCD Allocate one or more words (32 bits) of data
SPACE Allocate a zeroed block of memory with a particular size
FILL Allocate a block of memory and fill with a given value.
EQU Give a symbol name to a numeric constant
RN Give a symbol name to a register
EXPORT Declare a symbol and make it referable by other source files
IMPORT Provide a symbol defined outside the current source file
INCLUDE/GET Include a separate source file within the current source file
PROC Declare the start of a procedure
ENDP Designate the end of a procedure
END Designate the end of a source file

 Directives are NOT instruction. Instead, they are used to

provide key information for assembly.

Directive: AREA

19

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The AREA directive indicates to the assembler the start of a new data or code section.

 Areas are the basic independent and indivisible unit processed by the linker.

 Each area is identified by a name and areas within the same source file cannot share the

same name.

 An assembly program must have at least one code area.

 By default, a code area can only be read (READONLY) and a data area may be read from

and written to (READWRITE).

Directive: ENTRY

20

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The ENTRY directive marks the first instruction to be executed within an application

program.

 There must be exactly one ENTRY directive in an application, no matter how many

source files the application has.

Directive: END

21

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The END directive indicates the end of a source file.

 Each assembly program must end with this directive.

Directive: PROC and ENDP

22

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 PROC and ENDP are to mark the start and end of a function (also called subroutine or

procedure).

 A single source file can contain multiple subroutines, with each of them defined by a pair

of PROC and ENDP.

 PROC and ENDP cannot be nested. We cannot define a function within another function.

Directive: EXPORT and IMPORT

23

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the begin of a subroutine
 ... ; Assembly program starts here.
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

 The EXPORT declares a symbol and makes this symbol visible to the linker.

 The IMPORT gives the assembler a symbol that is not defined locally in the current

assembly file. The symbol must be defined in another file.

 The IMPORT is similar to the “extern” keyword in C.

Directive: Data Allocation

24

Directive Description Memory Space

DCB Define Constant Byte Reserve 8-bit values

DCW Define Constant Half-word Reserve 16-bit values

DCD Define Constant Word Reserve 32-bit values

DCQ Define Constant Reserve 64-bit values

DCFS Define single-precision

floating-point numbers

Reserve 32-bit values

DCFD Define double-precision

floating-point numbers

Reserve 64-bit values

SPACE Defined Zeroed Bytes Reserve a number of zeroed bytes

FILL Defined Initialized Bytes Reserve and fill each byte with a value

Directive: Data Allocation

25

 AREA myData, DATA, READWRITE
hello DCB "Hello World!",0 ; Allocate a string that is null-terminated

dollar DCB 2,10,0,200 ; Allocate integers ranging from -128 to 255

scores DCD 2,3.5,-0.8,4.0 ; Allocate 4 words containing decimal values

miles DCW 100,200,50,0 ; Allocate integers between –32768 and 65535

Pi DCFS 3.14 ; Allocate a single-precision floating number

Pi DCFD 3.14 ; Allocate a double-precision floating number

p SPACE 255 ; Allocate 255 bytes of zeroed memory space

f FILL 20,0xFF,1 ; Allocate 20 bytes and set each byte to 0xFF

binary DCB 2_01010101 ; Allocate a byte in binary

octal DCB 8_73 ; Allocate a byte in octal

char DCB ‘A’ ; Allocate a byte initialized to ASCII of ‘A’

Directive: EQU and RN

26

 The EQU directive associates a symbolic name to a numeric constant. Similar to the

use of #define in a C program, the EQU can be used to define a constant in an

assembly code.

 The RN directive gives a symbolic name to a specific register.

; Interrupt Number Definition (IRQn)
BusFault_IRQn EQU -11 ; Cortex-M3 Bus Fault Interrupt
SVCall_IRQn EQU -5 ; Cortex-M3 SV Call Interrupt
PendSV_IRQn EQU -2 ; Cortex-M3 Pend SV Interrupt
SysTick_IRQn EQU -1 ; Cortex-M3 System Tick Interrupt

Dividend RN 6 ; Defines dividend for register 6
Divisor RN 5 ; Defines divisor for register 5

Directive: ALIGN

27

 AREA example, CODE, ALIGN = 3 ; Memory address begins at a multiple of 8
 ADD r0, r1, r2 ; Instructions start at a multiple of 8

 AREA myData, DATA, ALIGN = 2 ; Address starts at a multiple of four
a DCB 0xFF ; The first byte of a 4-byte word
 ALIGN 4, 3 ; Align to the last byte (3) of a word (4)
b DCB 0x33 ; Set the fourth byte of a 4-byte word
c DCB 0x44 ; Add a byte to make next data misaligned
 ALIGN ; Force the next data to be aligned
d DCD 12345 ; Skip three bytes and store the word

Directive: INCLUDE or GET

28

 The INCLUDE or GET directive is to include an assembly source file within

another source file.

 It is useful to include constant symbols defined by using EQU and stored in a

separate source file.

 INCLUDE constants.s ; Load Constant Definitions
 AREA main, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC
 ...
 ENDP
 END

