
Overview
Linguine aims to allow language science students to 
explore automated language analyses such as 
syntactic or semantic analyses.

This project built upon prior senior projects that 
created a user interface and web API. This year’s 
project focused on linguistic analysis functionalities 
as well as system stability and performance. 

Analyses & Visualizations

Lessons Learned

Technologies

Term Frequency Analysis
Compute word frequencies in a text

Coreference Resolution
Locate expressions that refer to the 
same entity in a text

Parsing & Part of Speech Tagging
Construct a dependency parse tree 
and mark words by part of speech

Sentiment Analysis
Estimate the sentiment of a text
along with its sentences and 
tokens

Relation Extraction
Find relationship triples between 
words

Named Entity Recognition
Identify words by classes such as
organization, place, or time 
expression

Interactive Text

Interactive Text

Interactive Text

Interactive Text

non

consequat
lobortis

vitae
Pelle

ntes
quefelis tellus

Null
aenim

libero
ipsum

ac

eu

tin
cid
un
t

au
cto
r

condimentum

etsodales

faucibus

volutpat aliq
uam

amet

ult
ric
es

co
ns
ec
tet
ur

pu
rus

congue

Cura
bitu
r

Donec

ve
lit

mo
les
tie

Prae
sent

au
gu
e

grav
ida

ligu
la

tortor

tristique

idut

sed eros

lor
em

tem
por

dignissim

ornare

im
pe
rdi
et

sit

Vestibulum

ante

lec
tus

elit
bibendum

ex

turpis

varius

sem

arcu

venenatisele
ife
nd

iacu
lis

rutru
m

mi quam

ma
ttis

scelerisque

Curaemetus

cubilia

Etiamullamcorper

fermentum

posuere

luct
us

era
t

orc
i

Phasellus

urna

ma
xim
us

mas
sa

prim
is

nisi

nunc

Integer

Vivamus

sollicitudin susc
ipit

Nam

dui

viverra

semper

Pro
in

est

pharetra

quis

Maecenas

he
nd
rer
it

ad
ipi
sc
ing

facil
isis

vehicula

port
a

pla
ce
rat

odio

nequ
e

eget

dolor

Fusce

conv
allis

justo

euismod

Nu
lla
m

egestas

lacus

diam

Word Cloud

Parse Tree

Contributions

• Consider a distributed model for expensive operations

• Flush out critical system bugs prior to opening up tool for use

• When inheriting a project, budget time for rework or bug fixing

• Sponsor time is valuable – e.g., helped us with domain concepts

Parse Tree

• Increased functionality with 5 new analysis types
• Added visualizations for all analysis types
• Made multiple usability improvements to UI
• Implemented concurrency on Python backend
• Integrated Stanford CoreNLP and Illinois Curator
• Enabled users to work while analysis is processing

NL
TK

Linguine
Open source natural language processing & visualization

Architecture Methodology

Python API
Performs analyses with 
Stanford CoreNLP, NLTK

NodeJS API 
Handles front end 
interactions such as 
corpus upload and 
analysis creation

Analysis Thread Pool 
Conducts analyses 
using a group of 
background server 
threads

Team Pastafarians: Danielle Gonzalez, Justin Peterson, Jeremy Vasta, Keegan Parrotte

We followed a Scrum methodology, using two week sprints. Several of our 
team members had experience using Scrum and we were likely to do much 
of the development independently, so it was the most appropriate choice.

In Fall, we met twice a week and remotely on the weekends. In Spring, we 
met in person three times a week to increase productivity.

We began each sprint with a sprint planning meeting to assign story points 
to each of our user stories. We used burndown charts to track our velocity 
and estimation accuracy. 

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

St
or
y	
Po

in
ts

Sprint

Velocity

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6 7 8 9 10

Ra
tio

	o
f	A

ss
ig
ne

d	
Po

in
ts
	

Co
m
pl
et
ed

Sprint

Estimation	Accuracy

Sponsor: Cecilia Ovesdotter Alm
Coach: Larry Kiser | 2015-2016

Named	Entity	Recognition

Parse	Tree

Coreferece Resolution


