
Interrupt Tutorial

The interrupt allows the programmer to immediately stop and perform time critical
functions. The signal generator is used in this case to create interrupts at regular intervals,
but any source can be used.

The above diagram is taken from the hardware manual and shows the pin out for the
LPT1 printer port. Pin 10 will be used for the interrupts. The source of the interrupt needs
to be connected to pin 10 and the ground needs to be connected to any pin between 18
and 25. The next step is to setup the software on the purple box to read the interrupt.

#define PORT_LENGTH 1 /* single register */
#define DATA_ADDRESS 0x378
#define STATUS_ADDRESS 0x379
#define CTRL_ADDRESS 0x37a
#define INIT_BIT 0x04
#define INTR_BIT 0x10
#define PARALLEL_IRQ 0x07 /* parallel port’s interrupt vector
*/

/* bit 2 = printer initialization (high to initialize) */
/* bit 4 = hardware IRQ (high to enable) */
#define INIT_BIT 0x04
#define INTR_BIT 0x10

volatile unsigned _pulseCount;
uintptr_t ctrl_handle;
int interruptID;

The following segment of code will give later code, the ability to access the hardware.
int privity_err;
privity_err = ThreadCtl(_NTO_TCTL_IO, NULL);
if (privity_err == -1)
{

printf("Can't get root permissions\n");
return -1;

}

The following segment will get a pointer to the memory address of the control address for
the printer port.
// Get a handle to the parallel port's Control Register
ctrl_handle = mmap_device_io(PORT_LENGTH, CTRL_ADDRESS);
if (ctrl_handle == MAP_DEVICE_FAILED) {
 perror("control map failed");
 exit(EXIT_FAILURE);
}

Standard Parallel Port Control Register
Base 378
Location Base+2 37A
Bits Bit 0 Strobe
 Bit 1 Auto Linefeed
 Bit 2 Initialize Printer
 Bit 3 Select Printer
 Bit 4 Enable IRQ Via Ack Line
 Bit 5 Enable bi-directional port
 Bit 6 Unused
 Bit 7 Unused

The following segment initializes and enables the interrupts on that port. The out8()
function writes a one to the second bit in the register which initializes the printer. Then
the next out8() function call writes a one to the fourth bit which enables interrupts on the
ACK line.

out8(ctrl_handle, INIT_BIT);
out8(ctrl_handle, INTR_BIT);

The following method, InterruptAttach(), is used to used to setup the interrupt handler.
The first argument that is passed in defines the Interrupt that is to be attached, in this case
it our interrupt is defines as PARALLEL_IRQ. The next argument is the function that
handles the interrupt which is interruptReceived in our case. The function needs to be
setup with two input arguments, here they are the *arg and the id. The next argument
passed into InterruptAttach is size which indicates how big the data, in bytes, is that will
be passed in arg of your function that handles the interrupt. The last argument to be
passed is the flags parameter which is zero in our case. The interrupted is then checked to
make sure that the function was performed correctly.

interruptID = InterruptAttach(PARALLEL_IRQ, interruptReceived, this,
sizeof(this), 0);
if (interruptID == -1) {
 fprintf(stderr, "can't attach to IRQ %d\n", PARALLEL_IRQ);
 perror(NULL);
 exit(EXIT_FAILURE);
}

const struct sigevent *
interruptReceived(void *arg, int id)
{

 atomic_add_value(&_pulseCount, 1);
 return NULL;
}

With the code from above we have a program which creates interrupts when a signal is
received from the ACK pin of the printer port and counts the number of pulses from the
signal generator.

