2015 12th Working Conference on Mining Software Repositories

A Dataset of Open-Source Android Applications

Daniel E. Krutz, Mehdi Mirakhorli, Samuel A. Malachowsky, Andres Ruiz,
Jacob Peterson, Andrew Filipski, and Jared Smith
Rochester Institute of Technology, Rochester, NY, USA
{dxkvse, mxmvse, samvse, ajr2546, jrp9988, abf1932, jps6773} @rit.edu

Abstract—Android has grown to be the world’s most popular
mobile platform with apps that are capable of doing everything
from checking sports scores to purchasing stocks. In order to
assist researchers and developers in better understanding the
development process as well as the current state of the apps
themselves, we present a large dataset of analyzed open-source
Android applications and provide a brief analysis of the data,
demonstrating potential usefulness. This dataset contains 1,179
applications, including 4,416 different versions of these apps and
435,680 total commits. Furthermore, for each app we include
the analytical results obtained from several static analysis tools
including Androguard, Sonar, and Stowaway.

In order to better support the community in conducting
research on the security characteristics of the apps, our large
analytical dataset comes with the detailed information including
various versions of AndroidManifest.xml files and synthesized
information such as permissions, intents, and minimum SDK.
We collected 13,036 commits of the manifest files and recorded
over 69,707 total permissions used. The results and a brief set of
analytics are presented on our website: http://androsec.rit.edu.

Index Terms—Open-source dataset, Android development,
Software Engineering

I. INTRODUCTION

Android has become an extremely popular mobile platform,
and Android apps are not immune to the problems which have
hindered traditional software — especially security vulnerabil-
ities, high maintenance costs, and bugs. Understanding how
software is created and maintained is paramount in determin-
ing how to produce it faster, cheaper, and of higher quality.
One way to gain valuable insight into the development process
is to examine existing projects: source code, how the app has
evolved over time, and attributes such as its security, defects,
and size. App source code may be analyzed using static
analysis tools, providing data about the software’s security
risk level, possible defects, or even lack of adherence to
coding standards. Studying version control history can provide
information about how the app was created — especially
through the examination of commit messages, who made the
commit, and when it was made.

We have created a dataset of 1,179 open-source Android
apps with 435,680 version control commits through the mining
of F-Droid!, a repository of Android apps of various sizes and
categories. In this paper we discuss (i) the data collection and
analysis process, (ii) web portal developed to share the data
as well as analytical results in an easy to use manner, and

Uhttps://f-droid.org

978-0-7695-5594-2/15 $31.00 © 2015 IEEE
DOI 10.1109/MSR.2015.79

(iii) different characteristics and attributes of this dataset. Our
goal is to create a publicly available dataset which researchers
can utilize to conduct more comprehensive experiments on
Android app development.

II. RELATED WORK

While we are unaware of any projects which have gathered
such a substantial amount of Android data, performed various
types of static analysis upon it, and made is as publicly
available as we did, there are several existing commercial
websites which do provide metics about Android applications.
Appannie?, AppBrain®, and AppZoom* contain analytical and
statistical information about hundreds of thousands of Android
apps in a robust and easy to use online format. They do not
appear to make their data fully transparent or examine the
version histories as we have done.

A large number of previous works have analyzed version
control systems for various software engineering purposes.
Eyolfson et al. [5] examined the effects that developer ex-
perience, and date and time of commit had on the bugginess
of an application. Buse and Weimer [2] used commit messages
to automatically document program changes. While we do not
perform any data analysis in this paper, the previous use of
version control information for software engineering research
demonstrates the importance and relevance of our dataset.

ITI. DATASET CONSTRUCTION

Our dataset was built in two primary phases: the data
collection process which included gathering source code and
version control information from the F-Droid repository, and
an analysis using several static analysis tools. An overview of
the process is shown in Figure 1.

A. Collection Process

For the first phase we built a scraper tool to collect data
from the F-Droid repository, extracting information from each
app such as meta-data (name, description, and version), the
source code of each major version, and its most recent apk
(Android application) file. Additionally, we collected version
control information such as the committer user name, commit
time, and commit messages, ensuring all data was tagged with
the version number to allow analysis over time.

Zhttp://www.appannie.com
3http://www.appbrain.com
“http://www.appszoom.com

522

TABLE I: Data Overview

TABLE II: Version Counts

TABLE III: Commit Keywords

TABLE IV: Committer Count

Min Commit Count
10 25 50
Count of | Apps 118 53 23
Categories 13 13 11
Avg Commiter Count 35 60 94
Commit Count 2,841 | 5,233 | 9,240

Static Analysis

AP || P | | e

ke

FindBugs | | PMD Jlint
Shar

Q’o

O &/

Checkstyle

E-Droid

.git & .apk
Metadata

s

Data Collection

Semantically organized
analytical data (Code, commits,
bugs, security issues)

Fig. 1: Collection & Analysis Process

Once major version history had been established, each
appropriate apk was downloaded from the version control
repository and analyzed for additional metadata. The An-
droidManifest.xml file (also available in the dataset) includes
information on permissions, intents, target sdk, and minimum
sdk, which were extracted using a second script.

B. Static Analysis

Once collection was complete, we continued with analysis,
running a variety of static analysis tools on the app’s source
code. Androrisk’ and Stowaway [6] were used to analyze
the apk files, and Sonar was used on the extracted source code.

Stowaway: Android developers operate under a permission-
based system where apps must be granted access (by the
user and operating system) to various areas of functionality
before they may be used. Examples include GPS location
information, contacts, or the ability to make a phone call.
If an app attempts to perform an operation to which it does
not have permission, a SecurityException is thrown. Stowaway

Shttps://code.google.com/p/androguard

Value Count Min Versions | Count Eiiyword Version ;:10;1;1;
Totals | Apps 1,179 3 466 :
- Bug 21,380
Versions 4416 5 258 -
- Version 14,031
Commiters 4,535 10 97 Tack 1707
Commifts | 435,680 5 54 a d
- Performance 809
Largest | Versions 48 20 26 Pormissi 700
Committers 202 25 16 Fe_rlm 155100 373
Commits 65,110 30+ 12 arlure
Security 148

523

TABLE V: Permission Counts

Permission Count
INTERNET 9,049
WRITE_EXTERNAL_STORAGE 6,518
ACCESS_NETWORK_STATE 5,778
WAKE_LOCK 3,886
RECEIVE_BOOT_COMPLETED 3,402

discovers these permission-gaps — the over-permission and
under-permission rate of an application.

We selected Stowaway because it is able to state explicitly
what over-permissions and under-permissions are present us-
ing a static-analysis based approach (not requiring an Android
device or emulator). Stowaway has also demonstrated its
effectiveness in existing research [6]. Permlyzer [8], a more
modern permission detection tool, was not used because its
authors have not made it available for download.

Androrisk: A component of the Androguard reverse engi-
neering tool, Androrisk calculates a risk indicator of an app
based upon various settings and permissions requested by the
application. The presence of permissions that may send an
SMS, place a call, or access the internet, for example, have
varying weights which will elevate the application’s risk level.
The total reported security risk score for each application is
recorded and available.

We chose Androrisk because it is freely available and
open-source (allow others to confirm our findings), it has the
ability to quickly process a large number of apps (via static
analysis), and the AndroGuard library (of which Androrisk is
a component) has already been used in existing research [4].

Sonar®: Sonar is a source code analysis tool which
covers the 7 axes of code quality: architecture and design,
comments, coding rules, potential bugs, complexity, unit tests,
and duplications. Sonar was chosen for the wide range of
code metrics and defect analysis that it provides; in addition
having to its own analysis components, it integrates three of
the most popular static source code analysis tools: FindBugs’,
Checkstyle®, and PMD’. FindBugs uses static analysis to
identify hundreds of different error types within Java source
code, allowing us to find correlations between bugs and other
recorded metrics within applications. Checkstyle determines
how well Java source code adheres to coding rules and

Ohttp://www.sonarqube.org
"http://findbugs.sourceforge.net
8http://checkstyle.sourceforge.net
“http://pmd.sourceforge.net

standards, and PMD analyzes code to identify bad practices
that may cause a more inefficient and harder to maintain
codebase.

IV. ANALYTICS & DATA SHARING

The extracted data and analytical results are shared through
our website, http://androsec.rit.edu. Our goal is to provide
several ways for users or researchers to efficiently access and
use this data. A general user can simply use this web portal
to retrieve analytical information about a specific app. As an
example, they may wish to see if a specific application version
has more over-permissions or potential bugs as compared to
a previous version. A researcher can utilize more advanced
features of the site, such as downloading the entire dataset as
well as analytical results.

The entire SQLite database, which contains the static anal-
ysis results and other data from the version control systems,
is also available for download on our project website along
with all collected .apk files.

A. Exploring the Dataset

In order to provide an understanding of the dataset, we have
created some metrics exploring the depth and breadth of the
applications and metadata. An overview of the total number
of unique apps, versions, committers, and commits along with
the highest number of versions, committers and commits for
any collected app is shown in Table 1.

Table II displays the number of apps which have at least
a specific number of versions, which is shown in the Min
Versions column. Our dataset contains 466 apps which have
at least 3 developer defined versions, and 12 apps which have
30 or more versions.

Table IV displays the number of apps and categories which
have an average number of 10, 25, and 50 unique committers.
A unique committer is defined as a commit made by someone
using a unique name in the version control system for a
specific app. Categories are the types of groups the app has
been defined as belong to — examples include office, internet,
navigation, and games.

Version control commit messages have been used in a wide
range of software engineering research [1] including assisting
in the automatic documentation of program changes [2] and
helping with the identification of bug fixing patches [3],
which typically searches for keywords such as “bug” and
“fix” in order to find bug fixing commits [7]. For each of
the 435,680 recorded commits, we have stored the author’s
commit message. Examples of these messages include “Added
progress bar to notification”, “Fix a bug with the whitelist”,
and “Fix key input in credits sequences.” Table III displays
some keywords and the number of commits each keyword
appeared in.

Information about permissions is one of the most important
data-points and may be used to determine how permission
settings evolve over time, which permissions are most promi-
nently used, and if outdated permissions are still used instead
of newer ones. Table V displays the top 5 most commonly

used permissions in all AndroidManifest.xml commits along
with the number of times they appeared. Complete results are
available in our database for further analysis.

B. Analytical Results

The project website contains several reports and information
pages, and users may choose to download the entire dataset.
We display a wide range of aggregate information by cat-
egory for all apps including the top over-permissions, most
vulnerable apps according to Androrisk, and coding standards
violations. As an example, Figure 2 illustrates the number of
over-permission issues by category.

Overprivileged Apps By Category

% Overprivileged

Office System Internet Games Multimedia

Fig. 2: Example Aggregate Data

Furthermore, a user can use the web portal and search for
information about a specific app, snapshot of this search is
shown in Figure 3. We provide data about individual app ver-
sions as collected from static analysis including over and under
permissions, Androrisk vulnerability scores, defect analysis,
and code complexity. Figure 4 shows defect information about
a sample app (FBReader) over the course of multiple versions.

Search: | FB|
Name # Versions Current Version Repo Type
FBReader TTS+ Plugin 12 3.5.4 git
FBReader TTS plugin 2 1.2 git
FBReader 37 1.8.2 git
FBReader Calibre connector 2 1.2 git

Showing 1 to 4 of 4 entries (filtered from 1,179 total entries)

Fig. 3: App Search

As shown in Figure 5, users may also explore the data
by writing their own queries against the dataset right on the
webpage.

C. Enabled Research

A dataset such as ours has a vast array of possible uses such
as helping to better understand the development process of in-
dividual Android applications or studying dominant paradigms

524

FBReader

37

Defect Analysis

9476 34

Lines of Code(LOC) - Per Version
Average LOC - 13304

#10C

0k
0.80.110.95.15 .05 1.0.12 111 118 1110 123 126 136 L6l
0.98.12 1011 110 L1z 119 122 124 133 155

Versions

1.7.2-Donut_ 1.7.3-Froyo
164

L.B.2-Frayb.6-ics
L.7.3-Donut 1.7.8-Froyo

Fig. 4: Information About Specific App

select Name, current_version from AppData where
categories = 'Office’

Fig. 5: Webpage Search Query

in app development at a more aggregate level. We next provide
exemplar usage scenarios for such data.

Facilitate research on mining software repositories Re-
searchers can easily download all of the raw data as well
as analytical results and conduct research experiments. An
example of empirical software engineering research that could
be assisted by our dataset is the exploration of the evolution
of Android applications. Overall, we collected 4,416 versions
of 1,179 apps, however the number of collected versions for
each app widely varied. For example, 514 apps only had 1
defined version while one of the apps had 48 total versions.
Future researchers may be able to use the included commit
message information to study different characteristics of apps.

Our version control history not only includes the log mes-
sage, but also the committer and the time of commit, which
has been previously used in wide range of mining software
repositories research [1]-[3], [5].

Information collected about the AndroidManifest.xml com-
mits can be used to determine how the app’s settings and
permission levels change and evolve over the time.

Benchmark Dataset The collected data and the static
analysis results can be used as benchmark datasets, allowing
other researchers to compare their homemade static analysis
results with our collected and analyzed data. This is especially
useful since we are not attempting to present any specific
findings or tools in our work, only data, eliminating any reason
to exclude or bias information contained within the dataset.

V. LIMITATIONS & FUTURE WORK

While we feel that our dataset is robust and quite useful
for a variety of areas of future research, it does have some

525

limitations and areas that will be improved upon. In the future,
new static analysis tools may be added to examine the apps.
Since we are storing the version control histories and source
code locally, running these tools retroactively against previous
versions of apps should require little effort.

While we feel that collecting more than 1,000 apps with
more than 4,000 versions and over 430,000 total commits
represents a substantially sized dataset, there are over 1.4
million'® apps available on GooglePlay, so our collection
represents only a very minor portion of all apps. Additionally,
we only analyzed free apps, excluding paid apps in our dataset.

Future improvements will be made to the website not only
making it more usable, but also displaying the data in a more
user friendly manner as well as allowing more customizable
reports.

VI. CONCLUSION

A dataset of Android applications with the results of the
static analysis tools we have created is an important tool
for understanding how Android applications are developed
and maintained. The metrics we have provided are useful
for understanding potential correlations between the various
collected data metrics, not only for individual apps, but for
apps as an aggregate as well. The collected data is publicly
available on the project website: http://androsec.rit.edu

REFERENCES

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The
missing links: bugs and bug-fix commits. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 97-106. ACM, 2010.

R. P. Buse and W. R. Weimer. Automatically documenting program
changes. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE *10, pages 33-42, New York, NY,
USA, 2010. ACM.

V. Dallmeier and T. Zimmermann. Extraction of bug localization bench-
marks from history. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering, ASE 07,
pages 433-436, New York, NY, USA, 2007. ACM.

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical
study of cryptographic misuse in android applications. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS 13, pages 73-84, New York, NY, USA, 2013. ACM.

J. Eyolfson, L. Tan, and P. Lam. Do time of day and developer experience
affect commit bugginess? In Proceedings of the 8th Working Conference
on Mining Software Repositories, MSR ’11, pages 153-162, New York,
NY, USA, 2011. ACM.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 627-638,
New York, NY, USA, 2011. ACM.

Y. Tian, J. Lawall, and D. Lo. Identifying linux bug fixing patches. In
Proceedings of the 34th International Conference on Software Engineer-
ing, ICSE ’12, pages 386-396, Piscataway, NJ, USA, 2012. IEEE Press.
W. Xu, F. Zhang, and S. Zhu. Permlyzer: Analyzing permission usage in
android applications. In Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on, pages 400-410, 2013.

(1]

[2]

3

—

[4]

[5]

[6]

[7

—

[8]

10http://www.appbrain.com/stats/number-of-android-apps

