
Darwin: A Static Analysis Dataset of Malicious and Benign
Android Apps

Nuthan Munaiah, Casey Klimkowsky, Shannon McRae, Adam Blaine,
Samuel A. Malachowsky, Cesar Perez, and Daniel E. Krutz
{nm6061,cek3403,smt9020,amb8805,samvse,cap7879,dxkvse}@rit.edu

Rochester Institute of Technology, Rochester, NY, USA

ABSTRACT
The Android platform comprises the vast majority of the
mobile market. Unfortunately, Android apps are not immune
to issues that plague conventional software including security
vulnerabilities, bugs, and permission-based problems. In
order to address these issues, we need a better understanding
of the apps we use everyday. Over the course of more than a
year, we collected and reverse engineered 64,868 Android apps
from the Google Play store as well as 1,669 malware samples
collected from several sources. Each app was analyzed using
several static analysis tools to collect a variety of quality and
security related information. The apps spanned 41 different
categories, and constituted a total of 576,174 permissions,
39,780 unique signing keys and 125,159 over-permissions.
We present the dataset of these apps, and a sample set of
analytics, on our website—http://darwin.rit.edu—with
the option of downloading the dataset for offline evaluation.

CCS Concepts
•Human-centered computing → Mobile computing;

Keywords
mobile computing, software quality, mobile security

1. INTRODUCTION
Android applications (apps) suffer from the same problems

that plague conventional software: security vulnerabilities,
defects, adherence to coding standards, and numerous other
issues. Additionally, malicious developers create malware for
the purpose of exploiting users or devices for profit. There
are innumerable areas of Android research which examine
both malicious and benign apps in a variety of quality, se-
curity, and evolutionary contexts. However, collecting this
information is a difficult or time-consuming endeavor. To
overcome this limitation, we have created a statistical dataset
to assist researchers in examining Android apps in a variety
of security and quality contexts. Our goal was to create

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Workshop on App Market Analytics’16, November 14 2016, Seattle, WA,
USA
c© 2016 ACM. ISBN 978-1-4503-4398-5/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2993259.2993264

an information set which could be used in a wide variety
of mobile research including security, quality and evolution
analysis. Our dataset contains information about 64,868
reverse engineered apps from Google Play and 1,669 apps
collected from known malware sources.

In this paper we describe (i) the data collection and analysis
process, (ii) an easy to use web application to share project
information and provide access to raw data in our SQLite
database, and (iii) the groundwork for future research by
exploring a variety of vital areas of future research. Due
to usage agreements, we are unable to publicly share the
APK files of the apps we examined. If researchers would like
access to the APK files, they should contact the authors of
the paper.

2. RELATED WORK
There have been many studies which analyzed mobile

apps on a large scale. Sarma et al. [10] evaluated several
large datasets, including one with 158,062 Android apps
to gauge the risk of installing the app, with some of the
results broken down by category. However, this work did
not analyze the apps using the range of static analysis tools
presented in this paper. Viennot et al. [11] developed a tool
called PlayDrone which they used to examine the source
code of over 1,100,000 free Android apps. Unfortunately,
they largely used information which could be gathered from
Google Play and only examined features such as library
usage and duplicated code. They did not study areas such
as quality, security vulnerability levels, and over-permissions,
which were a part of our analysis. Felt et al. described some
common developer errors found using their tool, Stowaway,
including confusing permission names, the use of deprecated
permissions, and errors due to copying and pasting existing
code [3]. Krutz et al. [5] created a public dataset of over 1,100
Android apps from the F-Droid1 repository and analyzed a
much smaller number of apps than our study and focused
more on the life cycle of the apps and how each iteration of
the app evolved with every version control commit.

There are several other websites which gather metrics
about Android apps. AppAnnie2 and Koodous3, collect An-
droid apps and perform several types of analysis on each of
them including downloads of the app over time and advertis-
ing analytics. However, no known services perform the same
types of static analysis and comparisons on apps that we do.

1https://f-droid.org/
2https://www.appannie.com
3https://koodous.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

WAMA’16, November 14, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4398-5/16/11...$15.00

http://dx.doi.org/10.1145/2993259.2993264

26

VirusTotal4 is a service which is able to analyze files and
URLs for viruses. Darwin does not analyze Android apps to
determine if they are viruses, it checks for vulnerabilities in
apps whose assumed intention is to be non-malicious. Several
works have created malware repositories containing malicious
application (apk) files for download, including the Contagio
Mobile Mini Dump5 and the Malware Genome Project6.

3. DATASET CONSTRUCTION
Our dataset was built by collecting apps and analyzing

them using several well-known security and quality static
analysis tools. Our paramount process concern was accuracy;
problems with even a small percentage of the apps or at any
stage in the collection or reverse engineering process could
have had devastating effect on the accuracy of our work. To
achieve an appropriate level of quality, we relied on unit
testing, manual verification, and frequent test runs. Because
of this, the optimization and testing phases took the largest
share of development time for the project.

3.1 Collect APK files
Our initial step was to collect app meta data informa-

tion and APK files from Google Play. We constructed a
custom-built data collection system, which uses Scrapy7 as
a foundation. Our goal was to collect a diverse set of apps,
so apps were randomly selected and collected by Scrapy from
Google Play and did not target specific apps, or specific
versions of apps. Our data collection process took place over
the course of more than a year.

Malware samples were collected from the Contagio Mobile
Mini Dump and the Malware Genome Project. The Contagio
Mobile Mini Dump has been collecting malware affecting
many platforms, including Android, for several years. In this
study, 160 malware examples from the Contagio Mobile mini
dump were used. The Malware Genome Project began in
2010 and has collected a substantial number of mobile mal-
ware. For our analysis, we used examples from 49 malware
families.

3.2 Static Analysis

.apk .dex .jar .java
unzip dex2jar jd-cmd

Figure 1: APK Decompilation Process

We employed a previously established process [6] to reverse
engineer the collected apps. The decompilation process is
shown in Figure 1. The APK file of each app was first
unzipped and then two open source tools (described below)
were used to retrieve the source code.

• dex2jar8: Converts .dex file into a .jar file. The jar

command is then used to extract .class files from .jar.
• jd-cmd9: Converts .class files to .java source files.

The Java source files were then subject to static analysis
to collect a variety of security and quality metrics. The static
analysis tools used were:
4https://www.virustotal.com/
5http://contagiominidump.blogspot.com
6http://www.malgenomeproject.org/
7http://scrapy.org
8https://code.google.com/p/dex2jar/
9https://github.com/kwart/jd-cmd

Stowaway [3]: The principle of least privilege states that
each app should request the minimum number of permissions
that it needs to function. Requesting more permissions
than required creates unnecessary security vulnerabilities [9].
Android operates under a permissions-based system where
apps must be granted specific functionality before they may
be used. Some of these include access to the camera, contacts,
microphone, and location data.

Over-permissions are considered security risks, and under-
permissions are considered quality risks. The primary differ-
ence between requested permissions and over-permissions is
the consideration of whether the app actually needs them
or not. Under- and over-permissions of an app, reported by
Stowaway, were recorded in our data. Modifications were
made to the existing version of Stowaway to accommodate
our process and stay current with updated Android permis-
sions.
AndroRisk10: AndroRisk reports the risk indicator of an
application concerning potential malware and determines
the security risk level of an application by examining sev-
eral criteria such as the presence of permissions which are
deemed to be more dangerous (i.e. access to the internet,
SMS messages, or payment systems) and the presence of
generally more dangerous functionality in the app (i.e. a
shared library, use of cryptographic functions, the reflection
API). We recorded the reported risk level for each APK file.
CheckStyle11: This tool measures how well developers ad-
here to coding standards such as annotation usage, size
violations, and empty block checks. We recorded the total
number of violations of these standards. Default application
settings for Android were used in our analysis. While adher-
ence to coding standards may seem to be a trite aspect to
measure, compliance to coding standards in software devel-
opment can enhance team communication, reduce program
errors, and improve code quality [7].
Jlint12: This examines Java code to find bugs, inconsisten-
cies, and synchronization problems by conducting a data flow
analysis and building lock graphs. We recorded the total
number of discovered bugs per app. This tool was selected
over FindBugs13 for its ability to analyze the applications
much faster while providing accurate results [8].
APKParser14: A tool designed to read various information
from Android APK files including the version, intents, and
permissions. We used the output from this tool to determine
the application version, minimum SDK, and target SDK.
Keytool15: A key and certificate management utility which
we use to determine various signing information including
owner and issuer information and the MD5, SHA1, and
SHA256 signing keys.

We also recorded other metrics about each application
including total lines of code, number of Java files, application
version, target SDK, and minimum SDK. Stowaway and
AndroRisk were able to analyze the raw APK files, while
CheckStyle, Jlint, and Nicad required the APK files to be
decompiled. All results were saved to a SQLite database,
which is publicly available on the project website.

10https://code.google.com/p/androguard
11http://checkstyle.sourceforge.net
12http://jlint.sourceforge.net
13http://findbugs.sourceforge.net
14https://github.com/joakime/android-apk-parser
15https://docs.oracle.com/javase/6/docs/technotes/
tools/windows/keytool.html

27

3.3 Challenges
There were several significant challenges which had to be

overcome in our collection and analysis process. Although
using Scrapy was immensely beneficial, collecting such a large
number of APK files for over a year was not a trivial process.
There were several cases where our collection tool needed
to be modified due to alterations to Google Play. These
required changes would occur intermittently and would often
disrupt our collection process.

One of the biggest challenges we needed to overcome was
analysis time. Although we optimized our scripts to make
the analysis as fast as possible, the reverse engineering and
analysis process for an app took from 2 to 10 minutes to
complete. This meant that we were limited in the amount of
apps that we could analyze on a daily basis. Frustratingly,
for an reasons unknown, we were unable to reverse engineer
a small number (less than 0.5%) of collected apps. Our
hypothesis is that a library or obfuscated portion of code
created problems for our analysis, but unfortunately we were
unable to determine a root cause for the problem.

4. ANALYTICS AND DATA SHARING
We have shared all of our project results on our project

website: http://darwin.rit.edu. Our goal is to provide
a robust, and easy to use mechanism for other researchers
and interested parties. Android users may search for par-
ticular apps on the website to view a variety of quality and
security related metrics (as well as comparing different ver-
sions). A researcher may utilize the more advanced features
of the website and download the entire dataset for their own
analysis.

All data is available in three SQLite databases—one for
Google Play and one for each of the two malware sources.
A database schema is provided on the project website to
assist others in understanding our dataset. Unfortunately
we could not make the .apk files collected from Google Play
available due to both size restrictions (the total collected APK
files exceeded 680 GB) and possible copyright infringement.
Additionally, we could not make the malware available due
to usage agreements.

4.1 Exploring the Dataset
Table 1 provides some high-level statistics of the dataset

including the total number of categories, unique signing
keys, total permissions, total under-permissions, and total
over-permissions.

Table 1: Overview of Collected Data
Total Google Play Malware
Apps 64,868 1,669
Unique Category 41 n/a
Unique Signing Keys 39,592 188
Requested Permissions 558,216 17,958
Intents 232,645 3,331
Over-Permissions 125,159 7,288
Under-Permissions 228,475 2,222

While our primary goal was not to target specific versions
of apps, we did collect numerous versions of the same app.
Table 2 displays the number of analyzed apps and their
version counts. Analyzing multiple app versions can be
extremely useful in understanding the evolution of quality
and security attributes.

Table 2: Collected App Version Counts
Version 2+ 3+ 4+ 5+ 10+
Count 6,546 1,853 823 421 41

Using a custom built analysis tool, we collected each app’s
requested permissions from the reverse engineered Android-
Manifest.xml file. Table 3 displays the five most requested
permissions from Google Play apps, along with the number
collected from malware.

Table 3: Top Permission Counts
Permission Google Play Malware
INTERNET 73,484 943
ACCESS_NETWORK_STATE 62,494 821
WRITE_EXTERNAL_STORAGE 43,904 618
READ_PHONE_STATE 31,345 890
WAKE_LOCK 26,144 316

We collected the number of apps signed using the same
developer key for both the Google Play and malware apps.
These values are shown in Table 4. A signing key is used
to verify the origin of the app; only the developer holds the
proper key used to sign a created app.

Table 4: Apps Signed Using Same MD5 Key
App Count Google Play Malware
10+ 12,981 576
25+ 7,703 269
50+ 5,608 66
100+ 3,992 -
250+ 2,916 -
500+ 2,629 -

4.2 Analytical Results
The project website contains pre-built reports and infor-

mation pages which may be used to view aggregated or
individual app data. This includes some pre-built reports
in .csv format, some of which include: all reported over-
permissions for each app, requested permissions for each
app, and all reported static analysis metrics. The site also
contains several pre-built graphical representations of the
data.

Users may explore our data set in two ways: (1) search
for the results of individual apps as shown in Figure 2 or
(2) explore the data by writing their own queries against
the dataset using an interface on the website as shown in
Figure 3. Users may also choose to download our entire raw
dataset as a SQLite file.

4.3 Enabled Research
This dataset provides a wide range of benefits for Android

users, researchers, and app developers and we present some
potential usage scenarios for dataset.
Facilitate research on Google Play apps. A goal of our
work is to allow others to extend upon our research. Since
we collected a variety of information from Google Play and
from static analysis tools, comparisons could be done against
the user ratings of the apps from a variety of quality and
security-related metrics. Permissions data (558,216 total
collected permissions) could be used to provide insight in
numerous areas including the tendencies of permissions use
and the popularity of various permissions.

We collected several forms of signing information about
each app which could also prove useful for future researchers.

28

Figure 2: Example App Search

Figure 3: Webpage Search Query

Collecting and validating previous app versions is difficult,
and while we are unable to provide the actual .apk file, we are
able to provide the signing key—which may be used to verify
the authenticity of other apps. Although developers often
use different app and developer names, one way to identify
the creator of an app is through the MD5 key. Individual
developers may use the same MD5 value to sign multiple
apps, which is a reliable method of identifying the actual
creator of an app. Additionally, we collected other signing
information about the apps including various owner and
issuer values and the SHA1 and SHA256 values.
Facilitate research on Malware. To better detect and
defend against malware, we need to understand more about
it: how it is created, evolves, and its common characteristics.
Including data from benign and malicious apps will enable
researchers to study these apps in a variety of ways including
how malware is evolving, signing information, app quality,
and requested permissions.

5. LIMITATIONS AND FUTURE WORK
There are several limitations to our dataset and possible

improvements. We only examined free apps, thus excluding a
significant population (paid apps) in our analysis. Although
our reverse engineering process has been demonstrated to be
highly effective in previous research [2], all such processes
contain possible flaws which could lead to imperfections in
the analysis process. We used Stowaway to analyze apps
for permission misuse, however new tools such as PScout [1]
could have been used to conduct this analysis.

Along with the rating of an app, user reviews are an
effective way of measuring a user’s perception of an app [4].
Future work may be done to collect the associated user
reviews and include these results in the dataset as well. Our
goal was to collect a wide variety of apps and did not target
specific apps for collection. Future work may be done to

target specific apps to ensure that numerous versions of each
app are collected. We did not target specific apps or versions
for this study since our goal was to collect a diverse set of
apps as possible. Analyzing numerous versions of the same
app can provide valuable insight into the evolution of the
app from a security, and quality perspective.

6. CONCLUSION
We created a valuable, publicly accessible dataset by col-

lecting and analyzing 64,868 apps from Google Play and vari-
ous malware sources. This dataset is beneficial to developers,
researchers, and Android users in not only understanding
existing apps, but in how apps are developed, evolve, and
are maintained. The collected data is publicly available on
the project website: http://darwin.rit.edu.

7. REFERENCES
[1] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.

PScout: Analyzing the Android Permission
Specification. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 217–228. ACM, 2012.

[2] T. K. Chawla and A. Kajala. Transfiguring of an
android app using reverse engineering. 2014.

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In Proceedings of the
18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[4] H. Khalid, M. Nagappan, and A. E. Hassan. Examining
the Relationship between FindBugs Warnings and App
Ratings. IEEE Software, 33(4):34–39, July 2016.

[5] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky,
A. Ruiz, J. Peterson, A. Filipski, and J. Smith. A
Dataset of Open-Source Android Applications. In
Proceedings of the 12th Working Conference on Mining
Software Repositories. ACM, 2015.

[6] S.-H. Lee and S.-H. Jin. Warning System for Detecting
Malicious Applications on Android System. In
International Journal of Computer and Communication
Engineering, 2013.

[7] X. Li and C. Prasad. Effectively Teaching Coding
Standards in Programming. In Proceedings of the 6th
Conference on Information Technology Education,
pages 239–244, New York, NY, USA, 2005. ACM.

[8] N. Rutar, C. B. Almazan, and J. S. Foster. A
comparison of bug finding tools for Java. In 15th
International Symposium on Software Reliability
Engineering, 2004., pages 245–256. IEEE, 2004.

[9] J. H. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[10] B. P. Sarma, N. Li, C. Gates, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Android Permissions: A
Perspective Combining Risks and Benefits. In
Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, SACMAT ’12, pages
13–22, New York, NY, USA, 2012. ACM.

[11] N. Viennot, E. Garcia, and J. Nieh. A Measurement
Study of Google Play. SIGMETRICS Perform. Eval.
Rev., 42(1):221–233, June 2014.

29

