
Examining the Effectiveness of Using Concolic Analysis to
Detect Code Clones

Daniel E. Krutz and
Samuel A. Malachowsky

Software Engineering Department
Rochester Institute of Technology
{dxkvse, samvse}@rit.edu

Emad Shihab
Computer Science & Software Engineering

Concordia Unviersity
eshihab@cse.concordia.ca

ABSTRACT
During the initial construction and subsequent maintenance of an
application, duplication of functionality is common, whether inten-
tional or otherwise. This replicated functionality, known as a code
clone, has a diverse set of causes and can have moderate to severe
adverse effects on a software project in a variety of ways. A code
clone is defined as multiple code fragments that produce similar
results when provided the same input. While there is an array of
powerful clone detection tools, most suffer from a variety of draw-
backs including, most importantly, the inability to accurately and
reliably detect the more difficult clone types.

This paper presents a new technique for detecting code clones
based on concolic analysis, which uses a mixture of concrete and
symbolic values to traverse a large and diverse portion of the source
code. By performing concolic analysis on the targeted source code
and then examining the holistic output for similarities, code clone
candidates can be consistently identified. We found that concolic
analysis was able to accurately and reliably discover all four types
of code clones with an average precision of .8, recall of .91, F-score
of .85 and an accuracy of .99.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance;

Keywords
Code Clones, Concolic Analysis, Software Engineering

1. INTRODUCTION
Software must continually change in order to keep up with user

requirements, enhance its functionality, fix bugs, and repair security
vulnerabilities. Prior work has shown that these code changes often
result in cloned code for a variety of reasons. In many instances,
developers knowingly duplicate functionality across the software
system because of laziness or an unwillingness to refactor and retest
the modified portion of the application. Many developers choose to
avoid code clones but may not be aware that identical functionality
exists in their system, on occasion unintentionally injecting clones
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SAC ’15 April 13 - 17 2015, Salamanca, Spain
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3196-8/15/04 ...$15.00.
http://dx.doi.org/10.1145/2695664.2695929.

into their application [6]. Whatever the reason, clones continue to
be extremely widespread in software development; estimates have
shown that clones typically amount to up to 30% of an application’s
source code [2, 11].

Many previous works have stated that code clones are undesir-
able because they often lead to more bugs and make their remedi-
ation process more difficult and expensive [2, 6]. Clones may also
substantially raise the maintenance costs associated with an appli-
cation [8], the importance of which is highlighted by the fact that
the maintenance phase of a software project has been found to typ-
ically comprise at least 50% of the cost of a software project [22].
Inconsistent bug fixes to cloned code across a software system also
increases the likeliness of further system faults [5]. Code clones,
however, are not always viewed as being detrimental and may be
intentionally created via certain design patterns, APIs, or organiza-
tional coding standards [20].

We define the four types of code clones using the definitions
from Roy et al. [21]. Type-1 clones are the simplest, representing
identical code except for variations in whitespace, comments, and
layout. Type-2 clones have variations in identifiers, types, whites-
pace, literals, layout, and comments, but are otherwise syntacti-
cally identical. Type-3 clones are fragments which are copied and
have modifications such as added or removed statements, variations
in literals, identifiers, whitespace, layout and comments. Type-4
clones, the most difficult to detect, are code segments that perform
the same computation, but have been implemented using different
syntactic variants.

In assisting software practitioners, clone detection tools have
been indispensable in detecting and managing clone-related bugs
and even security vulnerabilities in software systems [4]. Of the
numerous clone detection tools, most have only been able to detect
the simpler clones: type-1, type-2, and type-3. To the best of our
knowledge, only a few techniques are able to detect type-4 clones,
the most complicated of the four [21].

In this paper, we examine the effectiveness of using concolic
analysis to detect code clones. Concolic analysis combines con-
crete and symbolic values in order to traverse all possible paths of
an application (up to a given length). Traditionally used in soft-
ware testing to find application faults [23], concolic analysis forms
the basis of a powerful clone detection tool since it only considers
the functionality of the source code and not its syntactic properties.
Because of this, elements that are challenging for many existing
clone detection systems, such as comments and naming conven-
tions, do not affect concolic analysis and its detection of clones.
This research is important because of the ability of the technique
to effectively discover all four types of code clones; few existing
clone detection techniques are known to be able to do so.

Our study will answer the following research questions:
RQ1: What types of clones is concolic analysis effective at de-

tecting?
We find concolic analysis is able to detect all four types of clones
in both a small environment and a larger clone oracle.

RQ2: How effective is concolic analysis for code clone detec-
tion?
We measured the precision, recall, accuracy, and F-score of con-
colic analysis for code clone detection against two small existing
oracles created by Krawitz [12] and Roy et al. [21] and a larger
one built by Krutz and Le [14]. We found that concolic analysis
was able to discover clones with an average precision of .8, recall
of .91, F-score of .85, and an accuracy of .99. We also found that
concolic analysis for clone detection compares favorably against a
robust clone detection tool, MeCC [10].

In the rest of the paper, we describe how concolic analysis finds
code clones, explain the types of clones it is capable of finding, and
compare this technique against a leading clone detection tool.

2. HOW CONCOLIC CLONE DETECTION
WORKS

Concolic code clone detection consists of two primary phases;
an overview of this approach is shown in Figure 1. The first step
is the generation of the concolic output on the target application.
This may be done using an existing concolic analysis tool such as
Crest1, CATG2, or Java Path Finder (JPF)3, which was used in our
example. A sample segment of concolic output is shown in Ta-
ble 2, and further examples are available on the project website4.
The generated concolic output represents all executable paths that
the software may take, and is broken into several path conditions.
These conditions, which are specific to code segments, must be true
in order for the application to follow a specified path. For example,
if in order to follow a specific path of an if statement a boolean
variable must be true, the contingency of the path condition would
be that the variable be true. Otherwise, this path will not be tra-
versed [23].

Source
Code

Concolic
Output

Results

Concolic Analysis

Clone Candidate
Identification

Figure 1: Concolic Analysis

Table 1 shows two type-4 clones from Roy et al. [21]. These are
type-4 clones because code segment #1 uses a for statement and
segment #2 uses a while statement for looping.

1http://code.google.com/p/crest
2https://github.com/ksen007/janala2
3http://babelfish.arc.nasa.gov/trac/jpf
4http://www.se.rit.edu/~dkrutz/CCCD/

Table 1: Example Type-4 Clone from Roy [21]
Code Segment #1 Code Segment #2

vo id sumProd (i n t n) {
f l o a t prod = 1 . 0 ;
f l o a t sum = 0 . 0 ; / / C1
f o r (i n t i =1 ; i <n ; i ++)
{

sum=sum + i ;
prod = prod ∗ i ;
foo (sum , prod) ;

}}

vo id sumProd (i n t n) {
f l o a t sum = 0 . 0 ; / / C1
f l o a t prod = 1 . 0 ;
i n t i =0 ;
w h i l e (i <n)
{

sum=sum + i ;
prod = prod ∗ i ;
foo (sum , prod) ;
i ++ ;

}}

Due to space limitations, only a portion of the concolic out-
put from running JPF on these clones is shown in Table 2. In
this example, constant variable types are represented generically
by “CONST” while the variable type integer is represented by a
generic tag “SYMINT.” Though not present in this example, other
variable types are represented in a similar fashion in concolic out-
put. Actual variable names do not appear anywhere in the output
and are irrelevant to the proposed clone detection process. Con-
colic analysis explores the possible paths that an application can
take, with similar execution paths signifying analogous function-
ality and is thus are indicative of a code clone candidate. Clones
in dead code or code that is unreachable via execution paths are
not be analyzed, and therefore are not discoverable via concolic
analysis.

Table 2: Diff of Type-4 Clone Concolic Output
Concolic Segment #1 Concolic Segment #2

PCs : 1 1 0
o r i g i n a l pc # = 1
CONST_1<=a_1_SYMINT
SPC#0=
o r i g i n a l P C # = 1
CONST_1<=a_1_SYMINT
SPC # = 0
c o n c o l i c P C # = 0
SPC # = 0
simplePC # = 1
CONST_1<=a_1_SYMINT
SPC # = 0
s o l v i n g : PC # = 1
CONST_1<=a_1_SYMINT
SPC # = 0
−−> # = 1

CONST_1<=a_1_SYMINT
SPC # = 0 −> t r u e
PCs : 2 2 0

PCs : 1 1 0
o r i g i n a l pc # = 1
CONST_0<=a_1_SYMINT
SPC#=0
o r i g i n a l P C # = 1
CONST_0<=a_1_SYMINT
SPC # = 0
c o n c o l i c P C # = 0
SPC # = 0
simplePC # = 1
CONST_0<=a_1_SYMINT
SPC # = 0
s o l v i n g : PC # = 1
CONST_0<=a_1_SYMINT
SPC # = 0
−−> # = 1

CONST_0<=a_1_SYMINT
SPC # = 0 −> t r u e
PCs : 2 2 0

In the concolic output in Table 2, the only differences in these
compared segments are the counter values used with the “CONST”
variable types used in each portion of concolic output. These dif-
ferences are highlighted in the example.

The concolic output is created at the method level, and is com-
pared to all other methods in a round-robin fashion using the Lev-
enshtein distance measurement (the minimal number of characters
that would need to be replaced to convert one string to another). As
an example, if the strings “ABCD” and “BCDE” are measured, the
Levenshtein distance would be 2, because “A” would need to be re-

moved and “E” inserted into the first string to make them identical.
This technique was selected for several reasons, including the im-
practicality of other string similarity measurement techniques. The
Hamming technique, for example, may only be used with strings
which are the same length [7, 19], and concolic output of even two
very similar methods rarely yields output of identical length. An-
other example, the longest common subsequence technique, does
not account for the substitution of values, only the addition and
deletion of characters [17].

Because of the relative flexibility of the Levenshtein distance
metric, it has proven to be especially well suited for our proposed
technique. This is due in part to its ability to work with strings of
different lengths and its restriction of upper and lower bounds in the
calculated distances. Our distance measurement is achieved using
the equation ALV = (LD/LSL) × 100. The Average Leven-
shtein Value (ALV) is computed by dividing the Levenshtein Dis-
tance between two files (LD) by the Longest String Length (LSL)
of the two strings being compared and then multiplying by 100.
While only a portion of the concolic output is shown in Table 2, the
Levenshtein distance between the two complete sets of output was
25, and the longest string length was 2,216. This means that our
formula to calculate the Levenshtein distance between this output
is ALV = (25/2216) × 100 = 1.13, which indicates a strong
similarity score, and thus a strong likelihood of a code clone.

We use a Levenshtein threshold score of 30 in our analysis to de-
termine if two compared items are code clone candidates. Our first
step in determining this as the most appropriate Levenshtein value
was to produce concolic output from the oracles by Krawitz [12],
Roy et al. [21] and Krutz and Le [14] using Levenshtein scores of
0-40 with 10 point increments as a basis for determining clones.
To obtain the optimal number, we compared the precision, recall,
F-score, and accuracy scores of each increment and found that for
all of the code bases, the Levenshtein value of 30 produced the best
rates.

We combined the precision, recall, F-score, and accuracy values
of the code bases and placed them into two charts to better visualize
the effects of using the different Levenshtein scores to determine
clones. Figure 2 displays the results of various Levenshtein values
in discovering clones in a single class as defined by Krawitz and
Roy et al. Figure 3 shows a similar analysis the results from the
Krutz and Le [14] oracle.

40 30 20 10

0.6

0.7

0.8

0.9

1

Levenshtein Values

Sc
or

e

Precision
Recall
F-score

Accuracy

Figure 2: Levenshtein Impact In Single Class

40 30 20 10

0.4

0.6

0.8

1

Levenshtein Values

Sc
or

e

Precision
Recall
F-score

Accuracy

Figure 3: Levenshtein Impact On Oracle by Krutz and Le [14]

A higher Levenshtein threshold score is likely to aid in the dis-
covery of more clones, but will also lead to more false positives,
creating lower precision but higher recall. Conversely, a lower
Levenshtein threshold score will find fewer actual clones, but also
have less false positives leading to low recall, but higher precision.
This is because a higher Levenshtein score means that the similarity
threshold for noting cloned items will be reduced. Different Lev-
enshtein values may be selected depending on their desired levels
of precision, recall, F-score, and accuracy.

3. EVALUATION
In the following sections, concolic analysis for clone detection

will be evaluated against two small oracles created by Krawitz [12]
and Roy et al. [21] and a larger oracle built by Krutz and Le [14]
to determine what types of clones concolic analysis is capable of
finding, along with its accuracy, precision, recall, and F-score.

3.1 Types of Clones Discovered
The C-based applications were analyzed via concolic analysis

using the Concolic Code Clone Detection (CCCD) tool [13, 15]. In
the previous paper, we demonstrated the ability of concolic analy-
sis to effectively discover all types of code clones in a very small
environment but did not thoroughly analyze the technique. We
will build on these results and further evaluate concolic analysis
for clone detection.

Table 3: Concolic Analysis Finding Clones on Single Class
Language T1 T2 T3 T4 Total

Java 5 6 6 6 23 (96%)
C 5 6 7 4 22 (92%)

Total Possible 5 6 7 6 24

RQ1: What types of clones is concolic analysis effective at de-
tecting? The initial step of evaluating concolic analysis for code
clone detection was to evaluate it against four clones defined by
Krawitz, and 16 by Roy et al. These 20 defined clones were added
to a Java and C file. The results in Table 3 indicate the ability
of concolic analysis to find a wide range of clones in this small,
controlled environment in both C and Java applications. We used

CCCD for the C code, and developed a small prototype based upon
JPF for the Java code.

Within the limited Java implementation, the concolic analysis-
based technique was able to detect 96% of all clones. The only
clone which concolic analysis was unable to detect was a type-3
clone as defined by Roy et al., as JPF was unable to traverse all
paths of this method for technical reasons including its inability to
perform analysis on several unsupported variable types (float, byte,
and short). This limitation ultimately affects the concolic analysis
clone identification process specifically when applied to Java.

A similar C file containing the clones of Krawitz and Roy et al.
was then examined for clones. Concolic analysis was able to detect
92% of all clones; the only clones it was unable to detect were
the type-4 clones as defined by Krawitz. In this clone example, a
method has been refactored into two functionally similar methods.
Two different concolic paths were generated for these methods, and
thus the generated concolic output was not similar, so no clone code
candidate was detected. Our technique did, however, find all other
instances of type-4 clones. The size of the examined functions did
not have a significant impact on the ability of any of the examined
processes in detecting clones.

This small example demonstrates that concolic analysis for code
clone detection is capable of finding all four types of clones in both
Java and C.

3.2 The Effectiveness of Concolic Analysis For
Code Clone Detection

Our next step was to evaluate the effectiveness of code clone de-
tection in terms of precision, recall, F-score, and accuracy.

RQ2: How effective is concolic analysis for code clone detec-
tion?
In order to evaluate the effectiveness of concolic analysis for code
clone detection, we used a function level clone oracle created by
Krutz and Le [14] since it is the only known oracle to contain all
four types of code clones explicitly defined. We ran concolic anal-
ysis for code clone detection and measured the accuracy, precision,
recall, and F-score of this technique against this clone oracle.

The oracle was created by first randomly selecting 3-6 classes
from Apache, Python, and PostgreSQL. A specially made compar-
ison tool allowed several researchers to independently and man-
ually compare all functions and record if the compared functions
were code clones, and, if so, what type of clone they were. Sev-
eral leading clone detection tools were then run against the code
base with their findings being recorded. These tool results were
then used by the researchers to identify any clones which they may
have missed for further analysis. The ultimate decision of whether
or not two compared functions represented a clone fell upon the
researchers and not any tool. When researchers disagreed if two
compared functions represented or on the type of clone, a discus-
sion took place until a consensus could be reached. While CCCD
was one of the selected tools used as input for this oracle, all clone
decisions were manually verified and tools were never the decid-
ing factor as to what constituted a clone. We do not feel like this
negatively impacted the results.

Precision, recall, F-score, and accuracy are important factors in
evaluating clone detection tools [28]. They should not return too
high of a rate of false positives, but also not miss a significant por-
tion of code clones. The definitions we used for precision, recall,
F-score, and accuracy (which will fall between 0 and 1) are de-
scribed below:

1. Precision: Ratio of the clone pair which a tool reports that

are true clones, not false positives.

2. Recall: Ratio of the clone pairs in a system that a tool is
able to detect.

3. F-score: Considers precision and recall to measure the ac-
curacy of a system. It is calculated as 2× (precision×recall

precision+recall
).

Sometimes referred as F1 or F-measure.

4. Accuracy: Percentage of elements classified correctly.

In order to evaluate the effectiveness of concolic analysis for
clone detection against an existing technique, we compared CCCD
against MeCC, a tool which is capable of discovering all four types
of code clones [10]. We ran MeCC against the Krutz and Le [14]
oracle using a variety of values for its two input parameters, sim-
ilarity, and minimum entry size. We used the settings which pro-
duced highest rates of precision, recall, accuracy, and F-score val-
ues against the clone oracle which were a similarity of 80 and a
minimum line entry of 4. We then ran CCCD against the same
oracle. The resulting averages for each tool are shown in Table 4.

Table 4: Average Precision, Recall, F-Score & Accuracy
Tool Precision Recall F-Score Accuracy
MeCC .6 .47 .46 .96
CCCD .8 .91 .85 .99

These results demonstrate the effectiveness of concolic analysis
for clone detection against a leading tool. While both techniques
are able to achieve a high rate of accuracy, CCCD has a much
higher F-score and recall than MeCC.

Concolic analysis has been shown to be a powerful clone de-
tection method which is not only able to discover a wide range of
clone types (including type-4), but is also able to find them with a
high rate of precision, recall, F-score, and accuracy.

4. RELATED WORKS
There are numerous clone detection tools which utilize a variety

of methods for discovering clones including text, lexical, seman-
tic, symbolic, and behavioral based approaches [10, 21]. However,
only a few are known to be able to reliably detect type-4 clones.
MeCC discovers clones based on the ability to compare a program’s
abstract memory states. While this work was successful in finding
type-4 clones, there are several areas for improvement such as its
limitation in analyzing pre-processed C programs and an excessive
clone detection time, likely caused by the exploration of an unrea-
sonably large number of possible program paths [10]. Krawitz [12]
proposed a clone discovery technique based on functional analysis
which was shown to detect clones of all types, but was never imple-
mented into a reasonably functional tool. This technique’s analysis
also requires a substantial amount of random data for determining
boundary values, which may be a difficult and time consuming pro-
cess. There are numerous other clone detection tools which have
been used in previous research. Roy et al. [21] carried out a thor-
ough analysis of many tools in 2009 which describes many of the
different types of clone detection tools and techniques. Subsequent
works have compared tools, but on a smaller scale [1, 24].

The most prominent area that concolic analysis has been applied
to thus far is software testing, specifically for dynamic test input
generation, test case generation, and bug detection [23, 27]. Several
tools exist for performing concolic analysis, including Crest, Java
Path Finder, CUTE [23], and Pex5.
5http://research.microsoft.com/en-us/projects/pex

We chose to use the code clone oracle created by Krutz and
Le [14] in 2014 since it explicitly contains all four types of code
clones, but there are several other prominently used clone oracles
which have been proposed in previous research. Tempero [25] de-
scribed a collection of 1.3M method-level-clone-pairs from 109
different systems. The goal of this work was to create a similar
data set for clone research. While this work was profound, much
of the data has a low level of confidence and requires further work
and analysis.

Lavoie and Merlo [16] created a clone oracle set containing type-
3 clones using the Levenshtein metric. There was no mention of
type-4 clones in this oracle. Bellon et al. [3] created a robust clone
oracle which has been used in a substantial amount of research.
This work was recently extended upon by Murakami et al. [18].
Unfortunately, neither of these oracles contain any explicitly de-
fined type-4 clones.

5. THREATS TO VALIDITY
There are several threats to the validity of our results. First, our

results were only run on Java and C. We do not believe that they
would significantly differ if concolic clone detection was run in
different languages, but without verification it is impossible to tell
for certain. Concolic analysis only executes the functional aspects
of an application, meaning that it will not be able to detect clones
in non-functional portions of the software. This technique is also
limited by the concolic analysis tools available for use, and while
these tools continue to improve and are robust, they are not perfect.
In some cases they are unable to traverse various portions of an ap-
plication or are incapable of recognizing segments of the software
for technical reasons. This inhibits the clone detection process for
these portions of the application. Finally, the followed path condi-
tions depend upon the control flow graph and its predicates, mean-
ing that concolic analysis for clone detection is still dependent upon
its implementation. While it is less dependent than syntax or token
based clone detectors, many code instances of identical semantics
or different implementations will not be detected by concolic anal-
ysis for clone detection. Concolic analysis may also be a slow and
resource intensive process which could adversely affect an imple-
mentation of our technique on a very large code-base.

A significant portion of this study was based off previous re-
search by Krawitz [12], Roy et al. [21], Krutz and Le [14], and
Kim et al. [10]. Our results, therefore, depend to a certain extent on
the benchmarks provided by the aforementioned prior work. Man-
ually finding type-4 clones in source code is extremely difficult and
there are only few automated techniques which are known to reli-
ably find type-4 clones. This makes it very difficult to test a new
mechanism in finding these clones since there are very few bench-
marks to be evaluated against.

The classification of clones and their type is a difficult and im-
precise task [26], so many researchers will likely disagree with the
classification of clones from our oracles. This is a problem which is
not at all unique to our work and affects other research as well [16].
While many works recognize type-4 clones [3, 21] other recent re-
search does not acknowledge their existence [6, 16], so there is
some fragmentation in the code clone community as to whether
type-4 clones even exist. This could mean that there are other tools
which are capable of finding type-4 clones, but simply made no
effort to do so. In spite of these possible limitations, we are con-
fident that concolic analysis is able to discover type-4 clones as is
exemplified by our evaluation using our chosen oracles.

We compared concolic analysis (using CCCD) against MeCC
and evaluated their rates of precision, recall, F-score, and accu-
racy. One potential problem with this comparison is that MeCC

finds clones at the sub-method level, while CCCD is only capable
of discovering clones at the method level. In order to mitigate this
problem, we analyzed all clones identified by MeCC which were
at the method level and used them for our comparison. This means
that MeCC will likely discover more clones than CCCD , but could
also lead to more false positives. While we acknowledge that this
could create a bias of our findings, the purpose of this comparison
was not to state that CCCD was necessarily better than MeCC, but
to merely demonstrate that concolic analysis is a powerful mecha-
nism for clone detection.

6. FUTURE WORK
While we demonstrated that concolic analysis is capable of re-

liably and accurately discovering all four types of clones, future
work may be conducted in several key areas. We only compared
concolic analysis for clone detection against MeCC. Future work
should be done to evaluate our technique against other leading clone
detection tools such as SeByte [9], CCFinderX6, ConQat7, ctCom-
pare8, Deckard9, iClones10, Simian11, Simcad12, and Nicad13.

We used an oracle created by Krutz and Le [14] since it con-
tained all four types of clones. We did not choose to use oracles
from Bellon et al. [3] or Murakami et al. [18] since they did not ex-
plicitly contain type-4 clones. However, future work may be done
to expand on our findings using these oracles.

Finally, we have demonstrated that concolic analysis for clone
detection may only discover clones at the method level. Future
work can be done to implement a concolic-based solution which
may locate clones at a more granular level. The biggest obstacle
in creating this solution is with the comparison process that our
technique uses for discovering clones. Currently, the concolic out-
put from each method is compared to the others in a round robin
fashion. Comparing snippets of code with one another would be a
virtually insurmountable task. Future work may be done to develop
a more efficient comparison process.

7. CONCLUSION
Concolic code clone detection represents a new and powerful

clone detection technique which we have demonstrated to be ca-
pable of finding all four types of code clones with high precision,
recall, accuracy, and F-score values. We evaluated concolic analy-
sis for clone detection using a small C and Java based oracle, and
then with a larger oracle comprised of C code. The proposed clone
detection technique is innovative because it not only represents the
first known concolic-based clone detection technique, but is also
one of only a few known processes which is able to reliably detect
type-4 clones.

References
[1] F. Arcelli Fontana, M. Zanoni, A. Ranchetti, and D. Ranchetti.

Software clone detection and refactoring. International
Scholarly Research Notices, 2013, 2013.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proceedings

6http://www.ccfinder.net/ccfinderx.html
7https://www.conqat.org/
8http://minnie.tuhs.org/Programs/Ctcompare/
9https://github.com/skyhover/Deckard

10http://www.softwareclones.org/iclones.php
11http://www.harukizaemon.com/simian/
12http://homepage.usask.ca/~mdu535/tools.html
13http://www.cs.usask.ca/~croy

of the International Conference on Software Maintenance,
ICSM ’98, pages 368–, Washington, DC, USA, 1998. IEEE
Computer Society.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and evaluation of clone detection tools. Software
Engineering, IEEE Transactions on, 33(9):577–591, 2007.

[4] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie. Xiao:
tuning code clones at hands of engineers in practice. In Pro-
ceedings of the 28th Annual Computer Security Applications
Conference, ACSAC ’12, pages 369–378, New York, NY,
USA, 2012. ACM.

[5] F. Deissenboeck, B. Hummel, and E. Juergens. Code clone
detection in practice. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
2, ICSE ’10, pages 499–500, New York, NY, USA, 2010.
ACM.

[6] E. Duala-Ekoko and M. P. Robillard. Clone region de-
scriptors: Representing and tracking duplication in source
code. ACM Trans. Softw. Eng. Methodol., 20(1):3:1–3:31,
July 2010.

[7] M. Jain, R. Benmokhtar, H. Jégou, and P. Gros. Hamming
embedding similarity-based image classification. In Proceed-
ings of the 2nd ACM International Conference on Multimedia
Retrieval, ICMR ’12, pages 19:1–19:8, New York, NY, USA,
2012. ACM.

[8] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do
code clones matter? In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 485–
495, Washington, DC, USA, 2009. IEEE Computer Society.

[9] I. Keivanloo, C. K. Roy, and J. Rilling. Java bytecode clone
detection via relaxation on code fingerprint and semantic web
reasoning. In Proceedings of the 6th International Workshop
on Software Clones, IWSC ’12, pages 36–42, Piscataway, NJ,
USA, 2012. IEEE Press.

[10] H. Kim, Y. Jung, S. Kim, and K. Yi. Mecc: memory
comparison-based clone detector. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11,
pages 301–310, New York, NY, USA, 2011. ACM.

[11] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical
study of code clone genealogies. SIGSOFT Softw. Eng. Notes,
30(5):187–196, Sept. 2005.

[12] R. M. Krawitz. Code Clone Discovery Based on Functional
Behavior. PhD thesis, Nova Southeastern University, 2012.

[13] D. E. Krutz. Concolic Code Clone Detection. PhD thesis,
Nova Southeastern University, 2012.

[14] D. E. Krutz and W. Le. A code clone oracle. In Proceedings
of the 11th Working Conference on Mining Software Reposito-
ries, MSR 2014, pages 388–391, New York, NY, USA, 2014.
ACM.

[15] D. E. Krutz and E. Shihab. Cccd: Concolic code clone de-
tection. In Reverse Engineering (WCRE), 2013 20th Working
Conference on, 2013.

[16] T. Lavoie and E. Merlo. Automated type-3 clone oracle using
levenshtein metric. In Proceedings of the 5th International
Workshop on Software Clones, IWSC ’11, pages 34–40, New
York, NY, USA, 2011. ACM.

[17] R. Li. A space efficient algorithm for the constrained heaviest
common subsequence problem. In Proceedings of the 46th
Annual Southeast Regional Conference, ACM-SE 46, pages
226–230, New York, NY, USA, 2008. ACM.

[18] H. Murakami, Y. Higo, and S. Kusumoto. A dataset of clone
references with gaps. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014,
pages 412–415, New York, NY, USA, 2014. ACM.

[19] M. Ros and P. Sutton. A post-compilation register reassign-
ment technique for improving hamming distance code com-
pression. In Proceedings of the 2005 international conference
on Compilers, architectures and synthesis for embedded sys-
tems, CASES ’05, pages 97–104, New York, NY, USA, 2005.
ACM.

[20] C. Roy, M. Zibran, and R. Koschke. The vision of software
clone management: Past, present, and future (keynote pa-
per). In Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week
- IEEE Conference on, pages 18–33, Feb 2014.

[21] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Sci. Comput. Program., 74(7):470–495,
May 2009.

[22] C. B. Seaman. Software maintenance: Concepts and practice.
Journal of Software Maintenance and Evolution: Research
and Practice, 13(2):143–147, 2001.

[23] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of soft-
ware engineering, ESEC/FSE-13, pages 263–272, New York,
NY, USA, 2005. ACM.

[24] J. Svajlenko, I. Keivanloo, and C. K. Roy. Scaling classical
clone detection tools for ultra-large datasets: An exploratory
study. In Software Clones (IWSC), 2013 7th International
Workshop on, pages 16–22. IEEE, 2013.

[25] E. Tempero. Towards a curated collection of code clones. In
Proc. IWSC, pages 53–59. IEEE, 2013.

[26] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Prob-
lems creating task-relevant clone detection reference data. In
Proceedings of the 10th Working Conference on Reverse En-
gineering, WCRE ’03, pages 285–, Washington, DC, USA,
2003. IEEE Computer Society.

[27] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura,
and Z. Su. Dynamic test input generation for web applica-
tions. In Proceedings of the 2008 international symposium
on Software testing and analysis, ISSTA ’08, pages 249–260,
New York, NY, USA, 2008. ACM.

[28] M. F. Zibran and C. K. Roy. Ide-based real-time focused
search for near-miss clones. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC ’12,
pages 1235–1242, New York, NY, USA, 2012. ACM.

