
96  acm Inroads  2016 December • Vol. 7 • No. 4

Teaching Android
Security Through
Examples: A Publicly
Available Database
of Vulnerable Apps

CONTRIBUTED ARTICLESARTICLES

By Daniel E. Krutz and Samuel A. Malachowsky,
RIT - Software Engineering

Security is hard, and teaching security can be even
harder. Here we describe a public educational activity to

assist in the instruction of both students and developers in
creating secure Android apps. Our set of activities includes
example vulnerable applications, information about each
vulnerability, steps on how to repair the vulnerabilities, and
information about how to confirm that the vulnerability
has been properly repaired. Our primary goal is to make
these activities available to other instructors for use in their
classrooms ranging from the K-12 to university settings. A
secondary goal of this project is to foster interest in security
and computing. All project activities may be found on the
project website [2].

The mobile revolution has allowed anyone with a basic
understanding of development to upload their applications
(“apps”) to an app store, making them available to millions of
potential users. With extreme openness comes great danger—
inexperienced developers have the capability to create vulnera-

ble apps that can negatively affect millions of users. Additional-
ly, experienced developers can and do make mistakes due to the
challenging nature of creating secure software.

Developers inadvertently create vulnerable software for a wide
range of reasons— simple errors, ignorance of how to create se-
cure apps, or a lack of understanding of the importance of secure
app development. In order to help educate developers about the
importance of secure app development as well as how to create
secure apps, we have created a public sample set of vulnerable An-
droid apps. Each example contains a clear demonstration of the
negative ramifications of the vulnerability, steps to repair the vul-
nerability, and posted actions to ensure that it has been resolved.

We have two primary goals for the project. First, we believe
that it’s important to educate Android developers about the
specific example vulnerabilities in our study. Second, we aim
to demonstrate the importance of security on a more general
level for the extremely diverse set of Android developers. We
would like developers of all experience levels to become more
interested in security through hands-on examples.

There were two primary concerns which lead us to create
this repository:
• Development Effort. Creating activities, especially those

with vulnerabilities can be a long and difficult process—
something which many instructors do not have the
necessary resources to build. The availability of these
activities frees instructors to do what they do best, teach.
Additionally, since these activities will be refined through

acm Inroads • inroads.acm.org  97

ARTICLES

Activities begin with providing the user some background
about the specific vulnerability being targeted—when, why,
and how the vulnerability may occur. Whenever possible, stu-
dents are also provided with a real-world example of occur-
rences of the vulnerability such as where they occurred in spe-
cific apps. Also included are some basic reasons about why the
vulnerability occurs and common developer mistakes which
lead to the vulnerability.

Each activity has an associated app which contains an in-
stance of the discussed vulnerability. These apps—created
specifically for these exercises—are typically very simple, hav-
ing the sole intention of conveying the example vulnerability.
Using the provided instruction set, students are able to recre-
ate the vulnerability, demonstrating its possible negative ram-
ifications. In some cases, activities also utilize free, third party
tools such as Fiddler [1] to provide visibility of the vulnera-
bilities or to later demonstrate that the vulnerability has been
repaired. Figure 2 demonstrates an example of a third-party
app inappropriately accessing message data from another app,
and Figure 3 is a developer-side demonstration of another
vulnerability—both would be part of an included vulnerability
demonstration workflow.

regular usage, instructors can be more confident that any
issues have already been resolved.

• Required Skillset. Teaching students and developers
to create secure software is a difficult process. Not all
instructors teaching mobile development are expected to be
adequately prepared to create a diverse, informative set of
activities such as ours.

Our project has several goals.
• Ease of use. All activities should be usable ‘out of the box’ by

instructors. Additionally, students and developers working
through the activities on their own should be able to do so
with as few roadblocks as possible due to the documentation
and clear instruction sets provided with each of the activities.

• Relevance. We have found that creating relevant, real-world
projects helps to foster student interest in the activity and
in security. Each of our activities contains relevant examples
from the commercial apps, including steps to recreate the
vulnerability and demonstrate its relevance.

• Meet a diverse range of skillsets. Not all students or devel-
opers are at the same skill level, and security is important
to all experience and skill levels. Additionally, anyone can
learn about security and mobile development from elemen-
tary-age to retirees. Our activities are designed to assist
students and developers of all experience levels and ages.

We have created ten publicly available activities that can be
found on our project website [2]. This list will continue to grow,
both through our own efforts as well as submissions from the
external sources. Our apps were created by an experienced An-
droid developer with over 1 million app downloads in the Goo-
gle Play store, and more in other app marketplaces.

ACTIVITIES
Although our list of activities is growing, we currently have ten
vulnerability examples ranging from basic examples as proper
intent protection to more complicated activities such as correct
use of content providers. The process outline of each activity is
outlined in Figure 1.

Each of the exercises contains:
• mobile apps which contain well-defined vulnerabilities;
• documentation about the adverse effects of the

vulnerabilities and how they may be exploited;
• step-by-step documentation on how to repair the

vulnerabilities, along with their rationale; and
• instructions for how to verify that the vulnerability has

been repaired

Figure 1: App Repair Process

Repair Processs
Vulnerable App Secure App

Verification Process
Verified Secure App

Figure 2: Example of Vulnerability Demonstration

Figure 3: Example of Vulnerability Demonstration Using Fiddler

98  acm Inroads  2016 December • Vol. 7 • No. 4

Teaching Android Security Through Examples: A Publicly Available Database of Vulnerable Apps

ARTICLES

party could create an overwhelming number of
(HTTP) requests directed towards a specific server.
The environments must be managed to make them less
vulnerable to these types of attacks.

• Ad Libraries (Advanced). In-app advertisements (“ads”)
libraries are able to use all of the permissions given to the
app which contains the ad library, even the people who did
not give this permission to the ad library itself. This can
open up various security and privacy issues within the app
including ad libraries collecting sensitive user information
such as locations or contact info.

• Content Providers (Advanced). Content providers share
data between apps, and any app in the system can access
the “content providers” database. Because of this, data
stored here must be kept secure and encrypted so that it
can only be read by an authorized app.

Although there are many more families of Android vulner-
abilities, we have initially selected these for several reasons in-
cluding their prevalence in existing apps, their ease of demon-
stration, and their potential for negative ramifications.

CONCLUSION
We have created a publicly available instruction set of vulnerable
Android apps which includes ten groups of vulnerabilities. Our
goal is for instructors to adopt these activities in a diverse set of
courses, allowing users of varying experience levels to examine,
demonstrate, and repair common Android vulnerabilities. All
course materials can be found on our project website [2].

Acknowledgements
Elements of this work are sponsored by a SIGCSE Special Projects Grant.

References
 1. Fiddler; http://www.telerik.com/fiddler. Accessed 2016 July 17.
 2. Teaching Mobile Security; http://www.teachingmobilesecurity.com. Accessed 2016

July 17.

Other Android-related research projects by the authors:
 1. Darwin Project: A tool which downloads, analyzes and reports on several key

analytics about Android apps including: Reported JLint errors, adherence to coding
standards, utilized permissions, over permissions and under permissions. To date,
the project has analyzed over 70,000 Android apps.

 2. Androsec Project: Collects and analyzes Android version control repositories from
F-Droid. In addition to various security and quality results gathered from static
analysis tools, we’ve also collected version control information such as commit
messages from the GIT repositories.

 3. M-Perm: A tool for detecting the permission gap in Android 6.0 and above apps.

Daniel E. Krutz
RIT - Software Engineering
1 Lomb Memorial Drive, Rochester, NY, USA
dxkvse@rit.edu

Samuel A. Malachowsky
RIT - Software Engineering
1 Lomb Memorial Drive, Rochester, NY, USA
samvse@rit.edu

DOI: 10.1145/2994152 ©2016 ACM 2153-2184/16/12 $15.00

 The user is then provided with information on how to repair
the vulnerability, which includes any relevant code snippets and
proper information about how the introduced new (defensive)
coding practices protect against the vulnerability. Our docu-
mentation also provides clear steps on how to repair the vul-
nerability within the provided app.

The final step has the user attempt to re-test whether the
vulnerability still remains within the app (i.e., the vulnerability
should no longer exist). The concluding portion of the activity
provides several important benefits to the user including
demonstrating the importance and proper procedures of
basic security testing, providing a sense of accomplishment
for the user.

Here are some of the activities, along with their anticipated ex-
perience/difficulty level.
• Activities Access (Beginner). Security issues arise when

people try to access specific unauthorized activities. An
example could be a bank app where users try to access a
balance management activity without properly logging into
the system.

• Intent Protection (Beginner). Android uses “intents” to pass
data between apps, for examples between the Facebook and
Facebook Messenger apps. Data passing between these apps
may be easily (and improperly) read by other apps. This
module explains how to protect information being sent via
intents between apps.

• XML (Beginner). Since XML is very easy to read using
reverse engineering, it is best to avoid saving important
information such as Ads code or Map Code within XML
files.

• Android Javascript (Medium). This activity demonstrates
the negative implications of using JavaScript in Webview
to pass data from an Android app to a server. This is
considered bad practice because anyone could use
malicious JavaScript code on their website to gain private
user information associated with the app.

• Broadcast (Medium). Broadcast data sent by the app is
easy to access from any other app in the system, so when
Broadcasting to specific apps, the data should be encrypted.
Intercepted unencrypted Broadcasts could lead to serious
security and privacy issues.

• Data Storage (Medium). When an app does not secure
storage data such as data files, shared references, and
databases (i.e., SQLite), it has the potential to be read by any
other app. This means that important information stored
in these files (such as a database connection information)
should be encrypted.

• Data Over HTTP (Medium). Data that moves over an
unencrypted HTTP (internet) connection is vulnerable
to “Man in the Middle” attacks. One example of this is
credit card information, which if passed over an unsecure
connection, could be intercepted midstream.

• DOS (Medium). Denial of Service (DoS) attacks are a
common problem with Android, because a malicious

