Software Requirements Specification

for

Webster Visualize
Version 1.7 approved
Team Visual Scrumware
Joseph Andrusyszyn
Mark Bryant
Brian Hannan
Robert Songer
February 14, 2008
Table of Contents

iiTable of Contents

Revision History
iv
1.
Introduction
1
1.1
Purpose
1
1.2
Project Scope and Product Features
1
1.3
References
1
1.4
Data Dictionary
1
2.
Overall Description
1
2.1
Product Perspective
1
2.2
User Classes and Characteristics
1
2.3
Operating Environment
2
2.4
Design and Implementation Constraints
2
2.5
User Documentation
2
2.6
Assumptions and Dependencies
2
3.
System Features
2
3.1
Application Startup/Shutdown
3
3.1.1
Description and Priority
3
3.1.2
Functional Requirements
3
3.2
Create New Test Case
3
3.2.1
Description and Priority
3
3.2.2
Functional Requirements
3
3.3
Open Test Case
4
3.3.1
Description and Priority
4
3.3.2
Functional Requirements
4
3.4
Close Test File
4
3.4.1
Description and Priority
4
3.4.2
Functional Requirements
5
3.5
Validate XML Test Case
5
3.5.1
Description and Priority
5
3.5.2
Functional Requirements
5
3.6
Generate Graphical Representation
5
3.6.1
Description and Priority
5
3.6.2
Functional Requirements
6
3.7
Edit Graphical Representation
6
3.7.1
Description and Priority
6
3.7.2
Functional Requirements
6
3.8
Delete Graphical Representation
8
3.8.1
Description and Priority
8
3.8.2
Functional Requirements
8
3.9
Comment Graphical Representation
8
3.9.1
Description and Priority
8
3.9.2
Functional Requirements
8
3.10
Export Graphical Representation
9
3.10.1
Description and Priority
9
3.10.2
Functional Requirements
9
3.11
Inline XML Editor
9
3.11.1
Description and Priority
9
3.11.2
Functional Requirements
9
3.12
Save Test Case
10
3.12.1
Description and Priority
10
3.12.2
Functional Requirements
10
3.13
Auto-Save Test Case
10
3.13.1
Description and Priority
10
3.13.2
Functional Requirements
10
3.14
Text-Based Debugging
11
3.14.1
Description and Priority
11
3.14.2
Functional Requirements
11
3.15
Custom Visuals
12
3.15.1
Description and Priority
12
3.15.2
Functional Requirements
12
3.16
Open, Save, & Edit Test Suite Descriptions
12
3.16.1
Description and Priority
12
3.16.2
Functional Requirements
12
4.
External Interface Requirements
13
4.1
User Interfaces
13
4.2
Hardware Interfaces
13
4.3
Software Interfaces
13
4.4
Communications Interfaces
13
5.
Other Nonfunctional Requirements
14
5.1
Performance Requirements
14
5.2
Safety Requirements
14
5.3
Security Requirements
14
5.4
Software Quality Attributes
14
Appendix A: Data Dictionary
16

Revision History

	Name
	Date
	Reason For Changes
	Version

	Robert Songer
	1/12/08
	Introduction, Overall Description
	1.0 draft 1

	Brian Hannan
	1/12/08
	System Features, Other Nonfunctional Requirements
	1.0 draft 2

	Robert Songer
	1/15/08
	External Interface Requirements and System Features revisions
	1.0 draft 2.5

	Robert Songer
	1/16/08
	Assumptions and Dependencies, and System Features revisions
	1.0 draft 3

	Robert Songer
	1/19/08
	Integrated feedback from the client for everything but System Features
	1.1 draft 1

	Robert Songer
	1/28/08
	Completed Functional Requirements
	1.2

	Robert Songer
	1/31/08
	Integrated feedback from client meeting
	1.3

	Brian Hannan
	2/2/08
	Added some terms to the data dictionary, fixed some grammatical mistakes and reworded how priorities are to be interpreted.
	1.4

	Joseph Andrusyszyn
	2/4/08
	Added many failure cases
	1.5 draft 1

	Robert Songer
	2/4/08
	Cleaned up revision for client approval
	1.5

	Joseph Andrusyszyn
	2/7/08
	Integrated feedback from client e-mail
	1.6

	Robert Songer
	2/14/08
	Final feedback for client approval integrated.
	1.7

1. Introduction

1.1 Purpose

This document will serve as a means of defining the Webster Visualize software as envisioned by Webster Financial Group and implemented by the RIT Software Engineering Senior Project Team, Visual Scrumware. The features and requirements described herein are agreed upon between the Senior Project Team and Webster Financial Client, and are expected to be implemented according to priority by the end of the senior project period.
1.2 Project Scope and Product Features

The version of Webster Visualize to be released at the end of this Senior Project will serve as a foundation for future development beyond release version 1.0. The software will translate between XML and graphical representations of test cases to be used in Webster Software Development test suites. The XML format of each test case will be loaded from and stored on a file system and, potentially in the future, in a remote database. Users will be able to use Webster Visualize to aid in the debugging of test cases by producing a concise textual representation of the test case flow, describing each step as it is laid out in the visual representation.
1.3 References

1. Team Visual Scrumware. Webster Visualize Project Plan, http://www.se.rit.edu/~scrumware/artifacts/January/WebsterVisualizeProjectPlan.doc
1.4 Data Dictionary

Select words throughout this document appear in Appendix A: Data Dictionary to provide the user with a comprehensive definition of the intended meaning behind each phrase. All words included in the data dictionary are italicized throughout the document to indicate that the reader may look up the meaning of the word or phrase for a better comprehension of the requirements.
2. Overall Description

2.1 Product Perspective

Webster Visualize will be a tool for Webster Financial Group to use at Test Automation Level 2, where Business Analysts will be able to produce their own XML test case documents through the design of visual test scenarios within the tool itself.
2.2 User Classes and Characteristics

	Business Analyst (favored)
	The Business Analyst is the target user of this system. As employees with detailed knowledge about the test scenarios from which test cases should be built, these individuals are trained in Microsoft Office applications, including Visio, and have experience producing basic flowcharts. They will prepare test cases to be processed without knowledge of XML or Object-Oriented Programming.

	Developer
	Members of the Webster Software Development team and the Webster QA team create XML test scenarios directly. Developers may be responsible for creating test cases through Webster Visualize rather than Notepad. They will also be responsible for debugging test cases created with Webster Visualize and editing the XML directly.

2.3 Operating Environment

OE-1:
Webster Visualize shall operate on a Windows XP machine with Service Pack 2 and .NET 2.0 installed.
OE-2:
The system may integrate with the Webster corporate intranet in order to communicate with internal Oracle database servers, though this is not a must for the senior project period.
2.4 Design and Implementation Constraints

CO-1:
The design of the test case visual representation as well as the system implementation must follow the Webster Testing Framework++ XML Schema Definition.
CO-2:
The system shall be implemented using Microsoft Visual C# 2005 with .NET 2.0.
CO-3:
All XML produced by translating the visual representations into a test case document must conform to the XML Schema Definition provided by the client.

2.5 User Documentation

UD-1:
The team shall produce a User Manual document with a description of the visual representations implemented by the tool.

2.6 Assumptions and Dependencies

AS-1:
Webster Financial will continue development of Webster Visualize after the senior project period is over.
AS-2:
The XML Schema Definition will evolve along with the client’s testing strategy, but will remain consistent for the duration of the senior project period.

AS-3:
Webster Visualize will operate strictly within the Webster Financial corporate intranet, requiring no security measures to be taken with the system’s networking interface.

AS-4:
Within each transaction group, the logical operator connecting each validation point is considered to be “AND” unless specified otherwise upon creation.

3. System Features

The following descriptions and requirements pertain to specific functions to be included in the development of the Webster Visualize application. Each description contains a brief overview of the requirements as well as the priority as set by the client’s preference. The priority is set to one of three levels: high, medium, or low. High priority requirements are those that are essential to the basic operation of the system, and in order for this project to be a success these requirements must be fulfilled within the senior project period. Medium priority requirements are highly desired though not necessary for the project’s success. Low priority requirements are least critical to the system operation and are considered to be only nice to have.
3.1 Application Startup/Shutdown

3.1.1 Description and Priority

The Webster Visualize application will be a windows-based executable that operates similarly to a Microsoft Office application, which is used frequently by all the user classes defined above. Priority = High.

3.1.2 Functional Requirements

Application.Startup:
The system shall be opened locally from an executable file.
Application.Startup.New:
When the application opens, the system must not have any XML loaded or visual representation displayed prior to a new test file being created or an existing one being opened.

Application.Startup.Open:
When an existing Test Case or Test Suite file is opened from Windows Explorer, a new instance of the application shall start as if opened normally, so long as the file is not already open in an instance of the application. The new instance shall then go through the appropriate open process for the respective file automatically.

Application.Shutdown:
The system must allow for the user to close the application at any time.

Application.Shutdown.Close:
During a safe application shutdown, the system must successfully close whatever test file may be open at the time before exiting completely. See section 3.4 for requirements on closing the previously open test file.
Application.Cancel:
At any time when the user is asked for input through a request message, the user shall always have the option to cancel whatever process spawned the message.
3.2 Create New Test Case

3.2.1 Description and Priority

Webster Visualize will allow the user to create a new test case to be saved in an XML format. Creating a new test case will present the user with a blank canvas and, behind the GUI, initialize all the required fields for a new XML document that conforms to the WTF XSD. Priority = High.
3.2.2 Functional Requirements

New.TestCase:
The system shall allow the user to create a new test case.
New.TestCase.Open:
If a test file is already open when the user requests to create a new test case, the system shall successfully close the previously open test file before creating a new test case. See section 3.4 for requirements on closing the previously open test file.
 New.Populate:
Upon creation of a new test case, the state XML will be populated with one of each of the required elements of a test case which includes: client, provider, provider service, category, sequence, and test data.

3.3 Open Test Case

3.3.1 Description and Priority

The system will allow the user to open an already existing test case from an XML file. This involves confirming that the XML file is a valid WTF test case before reading from the XML fields and producing visual artifacts with the appropriate information. Priority = High.

3.3.2 Functional Requirements
Open.Close:
If a test file is already open when the user requests to open a test case, the system shall close the previously opened test file before opening the requested test case. See section 3.4 for requirements on closing the previously open test file.
Open.Validate:
The system shall validate all XML files against the WTF XSD before attempting to initialize a visual representation.
Open.Valid:
The system shall generate the visual representation for a newly opened Test Case file that has been validated.

Open.Invalid:
The system shall allow for textual files that do not validate against the XSD to be opened and displayed in the Inline XML Editor without generating a graphical representation.
Open.Unreadable:
The system shall notify the user with a static message that the file cannot be read if the user attempts to open an unreadable file.
Open.ReadOnly:
The system shall notify the user with a static message that the file they are opening is read-only before loading the file if the user attempts to open a read-only file.
3.4 Close Test File
3.4.1 Description and Priority

Webster Visualize will provide the capability to close individual test files while still running the application. Whenever a test file closes, either independently within the application or by a safe application shutdown, it will save if any changes that have not been saved if the user so chooses. Priority = High.
3.4.2 Functional Requirements

Close.TestFile:
The system shall close a test file independently of the application itself, clearing any state XML that has been loaded.
Close.Changed:
The system shall check a test file for unsaved changes upon closing, prompting the user for direction with a request message if such changes are found.

Close.Changed.Save:
Given user permission, the system shall save a changed test file before closing it.
Close.Changed.Ignore:
The system must obey a user’s request to throw away unsaved changes by not saving a test file before closing it.

Close.Changed.Fail:
The system shall not close a test file that fails to be saved if the user requested that it should be saved.
3.5 Validate XML Test Case

3.5.1 Description and Priority

Webster Visualize will validate all state XML. All validation done to a test case will test the state XML against the Webster Test Framework XML Schema Definition provided by the client. Priority = High.

3.5.2 Functional Requirements

Validate.XML:
The system shall validate the state XML against the WTF XSD.

Validate.Fail:
The system shall report to the user with a static message when the state XML fails in the validation, notifying them if the state XML is not valid XML, required values or elements are missing, unknown elements are found, or invalid values were provided when detectable.
Validate.Fail.Editor:
The system shall not allow state XML that fails validation to be viewed or edited as a graphical representation, but shall be able to be viewed and edited within the inline XML editor.
3.6 Generate Graphical Representation

3.6.1 Description and Priority

Once a test case is created or opened within the application, the system will initialize a visual representation of the test case. The test case is read from an XML file and interprets it into a graphical representation. The graphical representation should provide a view of the flow of the underlying XML test case. Priority = High.

3.6.2 Functional Requirements

Visualize.Artifacts:
The system shall display element artifacts as unique, identifiable graphical shapes.
Visualize.Relations:
“Transaction” elements shall be graphically represented within the graphical representation for the “TransactionGroup” element that contains them. “Param” elements shall be graphically represented within the graphical representation for the “Transaction” element that contains them. “Validation” elements shall be graphically represented within the “TransactionGroup” or “Validation” element that contains them. “ValidationPoint” elements shall be graphically represented within the “Validation” element that contains them. “Entry” elements shall be graphically represented within the graphical representation for the “TestData” element that contains them. XML comment elements shall be graphically represented within the graphical representation for the XML element that contains them.

Visualize.Relations.Sequence:
Transaction groups and imported test cases that follow a sequence within a test case shall be indicated as such by rendering unidirectional arrows between linearly consecutive transaction groups. The system shall render a unidirectional arrow from a starting point to the first transaction group or imported test case in the sequence. The system shall render a unidirectional arrow from the last transaction group or imported test case in the sequence to an ending point
Visualize.Invalid:
When reading an XML file that fails validation, the system must not generate a visual representation and should inform the user so through a static message.
Visualize.Tooltips:
The system should provide the user with detailed information about an artifact within the visual representation upon mouse-over.

3.7 Edit Graphical Representation

3.7.1 Description and Priority

The system will allow the user to edit the graphical representation that shows how the underlying XML test case is flowing. The modifications to the graphical representation that take place will be reflected in the underlying XML. Artifacts will be the method of assembling the graphical representation through conformity to placement within the sequence, nesting respective to the elements in the XML, and Priority = High.

3.7.2 Functional Requirements

Visualize.Add.Artifacts:
The system shall provide the user with a means of adding element artifacts to the visual representation through dragging and dropping them from a toolbox onto the canvas.

Visualize.Add.Populate:
The system shall populate newly added artifacts with valid default values, including the automatic addition of a transaction artifact and a validation artifact to a transaction group.
Visualize.Add.Relations:
The system shall enforce the rule that validation and validation point artifacts may only be dropped within a validation artifact. The system shall also enforce the rule that parameter artifacts may only be dropped within a transaction artifact.
Visualize.Edit.Sequence:
The system shall allow for transaction group and imported test case artifacts to be created and moved within its linear sequence, adjusting the sequence order appropriately.

Visualize.Edit.Artifacts:
Graphical artifacts that are created on the canvas shall have editable properties that tie in with their respective elements in the WTF XSD.

Visualize.Edit.Constraints:
The root transaction and validation artifacts within a transaction group shall not be moved, copied, or deleted independently of the transaction group. The test data entry artifacts must be edited in a separate context from all other element artifacts.
Visualize.Edit.Relations:
The system shall allow for validation and validation point artifacts to be moved or copied from one validation to another within the graphical representation. The system shall allow for parameter artifacts to be moved or copied from one transaction to another within the graphical representation.

Visualize.Undo:
The system shall provide the ability to revert an edited test case to the state it was in previously before the ten most recent edit, addition, or deletion actions of an element artifact.

Visualize.Undo.Persist:
Operations that are remembered by the system for the purpose of the undo function must remain available to be undone so long as the file is open and no more than nine changes have been made successively. The operations shall not remain available after the file has been closed.
Visualize.Undo.Setting:
The maximum number of actions that can be undone at any time should be adjustable by the user.

Visualize.Redo:
Actions that are undone via the Undo function shall be repeatable after being undone but before any other undoable actions are performed. The number of undone actions that can be redone in succession shall be limited by the number of the same actions that were undone in succession.
3.8 Delete Graphical Representation
3.8.1 Description and Priority

All artifacts created by Webster Visualize must be able to be deleted while still maintaining conformity to the WTF XML Schema Definition. Priority = High.
3.8.2 Functional Requirements

Visualize.Delete.Artifacts:
The system shall provide the user with a means to delete element artifacts, with the exception of the root transaction and validation elements within a transaction group.

Visualize.Delete.Relations:
When deleting a transaction group or validation, all information contained therein shall be removed along with the transaction group or validation.

Visualize.Delete.Sequence:
The system shall allow for transaction group and imported test case artifacts to be removed from a pre-existing sequence within a test case. The sequence shall automatically update to connect the artifacts surrounding the removed artifact.
3.9 Comment Graphical Representation

3.9.1 Description and Priority

The artifact toolbox for Webster Visualize will contain an artifact similar to a UML comment box that may be placed on the canvas. This artifact will be saved in the XML version of the test case as a comment so as to not interfere with the test case itself. Priority = Medium.

3.9.2 Functional Requirements

Visualize.Comment:
The system shall produce a uniquely identifiable comment artifact that can be dragged and dropped on the visual canvas, within transaction groups, validations, validation points, and parameters. This comment must be placed within the state XML without interfering with its validity.

Visualize.Comment.Edit:
A comment artifact placed on the canvas must be editable to contain the intended comment in text format. This text must be extractable when the system reads the test case.

Visualize.Comment.Delete:
The system shall delete comment artifacts upon request, removing any data or code representation from the produced XML.

Visualize.Comment.Relations:
A comment artifact must be able to be moved or copied between the canvas, transaction groups, validations, validation points, and parameters.

3.10 Export Graphical Representation

3.10.1 Description and Priority

Webster Visualize will process a graphical representation and save it to disk as a JPEG image file. The image file produced will portray all artifacts within the graphical representation with the information necessary for identifying each one. Priority = Low.
3.10.2 Functional Requirements

Export.Image:
The system shall produce a JPEG image file of a valid test case graphical representation upon user request. The system shall allow the user to specify a file name and location for the image file.
Export.Image.Fail:
The system shall notify the user with a static message if the exported image cannot be saved.
3.11 Inline XML Editor
3.11.1 Description and Priority

Webster Visualize will provide the user with a means of editing the XML code that makes up a test case. When the test case XML text has been updated in this way, the system will modify the graphical representation to conform appropriately to the XML changes. Priority = Low.
3.11.2 Functional Requirements

Editor.Write:
The system shall provide an interface for directly editing the XML code of a test case. This code must be updated with any changes to the graphical representation that are made.
Editor.Tags:
The XML code found within the inline editor should visually distinguish between XML tags and the values within the tags.

Editor.Read:
Upon user request, the system shall read the edited XML code, validate it against the WTF XSD, and update the graphical representation. Any validation errors that occur during execution of this function shall be reported to the user in a static message.
Editor.Read.Fail:
If the edited code does not conform to the WTF XSD, the system shall inform the user of the validation error and shall not update the graphical representation.

Editor.Read.Auto:
The system may automatically attempt to validate and update the visual representation after the user is idle for a period of time. Validation errors that occur during this execution must not be reported to the user in a static message, but instead via some other method that doesn’t interrupt the user flow.
Editor.Read.Auto.Set:
The user shall be able to turn the automatic validation function on and off as desired.
Editor.Read.Auto.Config:
The period of time between automatic validations shall be configurable by the user. The default period of time shall be 5 seconds.
3.12 Save Test Case

3.12.1 Description and Priority

The system will allow the user to save a test case in an XML format. Comments may be stored within the XML test case and must not interfere with the XML elements themselves. Invalid test cases will be marked as such and made known to the user. Priority = High.

3.12.2 Functional Requirements

Save.Unnamed:
Upon the save request of a previously unnamed test case document, the system shall ask the user to specify a file name.

Save.Named:
The system shall allow users to save a previously named test case document with a new name upon request.

Save.Valid:
Upon the save request of a test case document that has passed validation against the WTF XSD, the system shall translate all visual artifacts into an XML document and save it to disk.

Save.Invalid:
Upon the save request of a test case document that has failed validation against the WTF XSD, the system shall ask the user for confirmation through a request message before saving the test case document.
Save.Extension:
The system may save test cases and test suites with the respective file extensions of .wtftc and .wtfts to allow users to make use of Windows file type associations.

Save.Fail:
The system shall notify the user with a static message if a test case document is unable to be saved.

3.13 Auto-Save Test Case

3.13.1 Description and Priority

The system should provide the ability to periodically save the XML test case unsolicited to a temporary file. This temporary file will provide a checkpoint from which the user may reload the test case in the event of a system crash. Priority = Medium.

3.13.2 Functional Requirements

Temporary.Save:
All test cases that undergo changes within the application shall be saved periodically without user request to a single temporary file. Any pre-existing temporary file must be overwritten by this process.
Temporary.Save.Files:
Temporary files created by the application shall be written to disk in the same folder as the file that is opened, or the application directory if the file has not been saved by the user. The temporary files must have uniquely identifiable names.

Temporary.Save.Config:
The period of time between automatic saving shall be configurable by the user. The default period of time shall be 5 minutes.

Temporary.Delete:
Upon successfully closing or saving a test case by user request, the system shall delete from disk any temporary files associated with that test case.

Temporary.Load:
If temporary files exist on disk during start-up, the system shall prompt the user to load the temporary file and follow through with the desired action.

Temporary.Save.Fail:
The system shall notify users with a static message the first time it is unable to save a temporary file after starting and the first time it is unable to save a temporary file after successfully saving one.

Temporary.Save.Fail.Recover:
The system shall notify the users with a static message when it is able to save temporary files the first time it is able to do so after having previously been unable to save one.

Temporary.Delete.Deleted:
The system shall ignore a failure to delete a no longer existing temporary file.

Temporary.Delete.Fail:
The system shall notify the user with a static message if it is unable to delete a temporary file that still exists.

Temporary.Load.Fail:
The system shall notify the user with a static message that it attempted to load a temporary file but failed upon failure.

3.14 Text-Based Debugging
3.14.1 Description and Priority

Webster Visualize will provide the user with a textual means of comprehending the flow of a test case that is created with the tool. The system will step through any test case that is opened by the application and produce a textual output that details each step taken, as interpreted from the graphical representation. Priority = Medium.

3.14.2 Functional Requirements

Debug.Display:
The system shall display a structured output of the actions taken in the flow of a test case to the user upon user request.
Debug.Display.Parameters:
The system output shall include the parameters specified for each transaction group element within the test case structure.

Debug.Display.Validations:
The textual representation shall include the nesting of validation and validation point elements within transaction group elements.
Debug.Invalid:
The system must inform the user with a static message when a test case is invalid and cannot be represented textually.
3.15 Custom Visuals

3.15.1 Description and Priority

Given that many users of Webster Visualize will have unique preferences with regards to the artifact colors and font sizes, the system will provide each individual with the option to adjust such settings to match personal preference. These settings will be unique to the user and persist throughout each test case that is opened once they have been set. Priority = Low.

3.15.2 Functional Requirements

Customize.Colors:
The user shall be able to select specific colors for each artifact that is included within the visual representations.
Customize.Fonts:
The system shall provide a means of adjusting the sizes of the fonts that display in the graphical representation.

Customize.Zoom:
The system shall allow the user to adjust the general zoom level of the canvas, shrinking or enlarging artifacts appropriately.

Customize.Profile:
Custom settings specified by the user shall be saved to the unique user’s Windows account, allowing for the customization to render automatically for each test case the user opens thereafter.
3.16 Open, Save, & Edit Test Suite Descriptions

3.16.1 Description and Priority

The system should provide the ability to open and save test suite descriptions from a local disk. The test suite descriptions explain how test cases may be grouped together to do more advanced testing. The system may later interface with an Oracle database when this feature is implemented after the end of the senior project period. This feature is not mandatory for the completion of this project, but would be nice to have so long as time permits to implement it. Priority = Low.

3.16.2 Functional Requirements

Suite.Open:
The system shall recognize test suite description files when opening them.

Suite.Open.Validate:
A test suite description file must validate the existence of files referenced as test cases and test suites contained within the XML and notify the user of any errant references.

Suite.Create:
New test suite descriptions shall be created upon user request, with a blank list of test cases and test suites.

Suite.Edit:
The list of files included in a test suite shall be editable by the user to include references to separate test files.

Suite.Edit.Group:
The system shall provide the option to select a directory and import references to all the test cases found therein.

Suite.Edit.Validate:
The addition of a new file reference to a test suite must be valid files that exist where specified on disk.

Suite.Save:
The system shall write test suite descriptions to an XML file on disk.
Suite.Save.Proprietary:
The system may alternatively save test suite descriptions using a proprietary file format.

4. External Interface Requirements

4.1 User Interfaces

UI-1:
Webster Visualize must provide a visual representation of test case flows using a flowchart format that business analysts will recognize immediately, or may quickly learn.

UI-2:
Webster Visualize should provide an inline XML editor for test cases that are loaded into the tool, though this is not necessary before the end of the Senior Project development period.
4.2 Hardware Interfaces

No hardware interfaces have been identified.

4.3 Software Interfaces

No software interfaces have been identified for version 1.0 of Webster Visualize. There is potential for future development done by Webster Financial to integrate Webster Visualize with existing test suite databases and an XML Interpreter after the senior project period is over.

4.4 Communications Interfaces

No communications interfaces have been identified.
5. Other Nonfunctional Requirements

5.1 Performance Requirements

PE-1:
The system shall interpret XML files and generate a graphical representation of a test case within 10 seconds, which will allow the user to work at a reasonably fast pace.
PE-2:
Under normal working conditions unhindered by the Windows operating environment, the system shall not freeze for a period of time longer than 2 seconds for optimum user efficiency.
5.2 Safety Requirements

No safety requirements have been identified.

5.3 Security Requirements

No security requirements are necessary because all security will be taken care of within Webster Financial’s current system. Thus no security requirements are needed for this system.
5.4 Software Quality Attributes

Extendability-1:

Development of Webster Visualize must follow standard good design practices to produce a system consisting of high modularity and detailed interfaces such that additional features conceived by the developers at Webster Financial may be easily implemented after the senior project period.
Modifiability-1:

The visual representation defined by Webster Visualize must accommodate for the addition of new artifacts that may appear in valid test files as XML elements. Developers extending the XSD must be able to modify the visual artifacts and toolbox to integrate such elements.
Usability-1:

The main goal of this system is to provide a WYSIWYG user interface to create and modify test cases using flow diagrams rather than dealing with complex XML documents. The system shall provide a look and feel that allows Microsoft Office Visio users to use the system with very little training.
Usability-2:

The visual artifacts should be created in a way that makes them easily distinguishable for a user that is visually impaired or color blind.
Performance-1:

The system should have the ability to deal with test cases consisting of 1,000 lines of XML code without freezing or causing the application to crash. This is very important because as time goes on test cases at Webster Financial may get much more complicated, resulting in large test case files. See section 5.1 Performance Requirements for more information.
Reliability-1:

The system needs to be able to produce consistent and repeatable XML output, so as to not confuse the user. This will also help the user when editing the XML text manually so they will be able to learn how the XML is being generated while working with the system for a longer period of time.
Reliability-2:

The system needs to be resilient against crashing and provide a user-friendly way to let the user know what is happening. This also means that the system should have the ability to save the current state of the test case in the case that the application does crash.
Appendix A: Data Dictionary

	artifact
	:
	Any generic graphical item used within the overall graphical representation of the test case such as arrows, sequencing graphical items, or comments.

	artifact toolbox
	:
	A user interface element that contains all the artifacts that may be placed (ex: drag-and-drop) into the graphical representation of a test case.

	canvas
	:
	The working area of a test case graphical representation.

	element artifacts
	:
	An artifact that graphically represents transaction group, imported test case, test data entry, transaction, validation, validation point, and parameter artifact elements within the XML test case description.

	ending point
	:
	Two concentric circles, the inner circle being solid and the outer circle being hollow, positioned at the bottom of a sequence.

	GUI
	:
	An acronym for Graphical Use Interface, which is what the user sees and is able to interact with while using the system.

	invalid (test case)
	:
	A test case is considered invalid if it does not conforms to the WTF XSD definition.

	may
	:
	This refers to something that is truly optional for a feature or sub-feature to do or have.

	must
	:
	This refers to something that a feature or sub-feature absolutely must do or have. A feature might not be high priority feature (must for the system), but there could be sub-features of that feature that must be there in order for that overall feature to be satisfied if it is included in the system.

	relation/relationship (artifact)
	:
	Some artifacts can exist only within other artifacts which are constrained through a relation. This usually relates directly to the structure of the XML document that has elements within other elements or elements that only exist if another element exists.

	request message
	:
	A system prompt that contains important information and demands the user to select one of its options as input before the application may resume execution.

	resilient
	:
	The ability to recover readily from unexpected behavior or reaching an unexpected state in the system. This also means that the system should inform the user anytime the system reaches such situations.

	RIT
	:
	Rochester Institute of Technology

	safe application shutdown
	:
	A shutdown of the application initiated by the user pressing the close button, selecting exit from the file menu, or pressing alt-F4 when the application has not halted.

	senior project period
	:
	December 3, 2007 – May 24, 2008

	shall
	:
	This refers to something that a feature or sub-feature absolutely must do or have. A feature might not be a high priority feature (must for the system), but there could be sub-features of that feature that must be included in order for that overall feature to be satisfied, if it is included in the system.

	should
	:
	This refers to something that is recommended that a feature or sub-feature do or have. There may exist valid reasons in particular circumstances to ignore a particular feature or sub-feature, but full implications must be understood and carefully weighed before choosing not to have such a requirement.

	starting point
	:
	A solid circle positioned at the top of a sequence.

	state XML
	:
	XML code that is loaded into the system either through reading an XML file, interpreting a visual representation, or reading from the XML editor.

	static message
	:
	A system prompt that contains important information, which the user must acknowledge via singular affirmative input before the application may resume execution.

	test file
	:
	A test case or a test suite, able to be serialized as either XML or a proprietary file format.

	validation (test case, file)
	:
	The process of deciding whether a test case is valid or invalid by comparing it to the WTF XSD format. This is not to be confused with a validation or validation point element artifact. This could also be referring to the process of deciding whether a file exists on the local hard disk in a specified location.

	valid (test case, file)
	:
	A test case is considered valid if it conforms to the WTF XSD definition. A file is considered valid if it exists on the local hard disk.

	will
	:
	This refers to part of the design of the system that needs to be considered to successfully complete the requirements because it is something that is already known. This includes things like the system will be used on Microsoft Windows XP Service Pack 2 machines with the .NET framework installed, and so on.

	WTF XSD
	:
	Webster Testing Framework XML Schema Definition

	WYSIWYG
	:
	An acronym that stands for: ‘what you see is what you get,’ which refers to the type of user interface available when editing a text document that will be translated into a graphical representation at some point. This type of user interface is similar to what you see in editors like Macromedia Dreamweaver or Microsoft Visual Studio .NET.

