Acceptance Test Plan for Webster Visualize

page ii

	Acceptance Test Plan
for
Webster Visualize

	Version 1.0 approved
Team Visual Scrumware
Joseph Andrusyszyn

Mark Bryant

Brian Hannan

Robert Songer

March 14, 2008

Table of Contents

iiiRevision History

11.
Introduction

11.1
Purpose

11.2
Scope

12.
References

13.
Environmental Needs

14.
Approach

14.1
Functional Testing

24.2
Non-Functional Testing

25.
Test Deliverables

26.
Functional Test Cases

26.1
High-Priority

26.1.1
Application Startup/Shutdown

56.1.2
Create New Test Case

66.1.3
Open Test Case

86.1.4
Close Test File

106.1.5
Validate XML Test Case

126.1.6
Generate Graphical Representation

136.1.7
Edit Graphical Representation

206.1.8
Delete Graphical Representation

246.1.9
Save Test Case

266.2
Medium-Priority

266.2.1
Comment Graphical Representation

286.2.2
Auto-Save Test Case

366.2.3
Text-Based Debugging

376.3
Low-Priority

376.3.1
Export Graphical Representation

376.3.2
Inline XML Editor

406.3.3
Custom Visuals

416.3.4
Open, Save, & Edit Test Suite Descriptions

437.
Non-Functional Test Cases

437.1
Performance

457.2
Modifiability

467.3
Reliability

487.4
Usability

498.
Glossary

Revision History
	Author
	Modification
	Date
	Version

	Robert Songer
	Initial Template
	2/2/08
	0.1

	Robert Songer
	Final Template, Introduction, References, Environmental Needs, and Functional Requirements of the first feature
	2/9/08
	0.2

	Robert Songer
	Create New Test Case, Open Test Case, and Close Test File test cases filled
	2/11/08
	0.3

	Robert Songer
	Validate XML Test Case and Delete Graphical Representation test cases filled
	2/16/08
	0.4

	Robert Songer
	Save Test Case test cases filled and Test Case ID scheme changed
	2/26/08
	0.5

	Mark Bryant
	Test cases added for all medium priority requirements
	3/2/08
	0.6

	Robert Songer
	Generate Graphical Representation, Export Graphical Representation test cases filled; Edit Graphical Representation and Inline XML Editor test cases started
	3/8/08
	0.7

	Mark Bryant
	Added a few test cases for performance, reliability and modifiability non-functional requirements
	3/9/08
	0.8

	Robert Songer
	Finished Edit Graphical Representation, Inline XML Editor, Custom Visuals, Test Suite Descriptions, Approach, and Test Deliverables
	3/10/08
	0.9

	Robert Songer
	Usability Revisions and Client Approval
	3/15/08
	1.0

1. Introduction
1.1 Purpose

The Webster Visualize Acceptance Test Plan is a collaborative accumulation of user acceptance tests. The test cases presented herein provide a comprehensive guide for both Webster Financial and Team Visual Scrumware to verify that the Webster Visualize application conforms to the requirements presented in the Software Requirements & Specifications document.
1.2 Scope

Each test case within this document will validate the system against functional and non-functional requirements in the Software Requirements & Specifications (SRS) document. Each functional and non-functional requirement within the SRS is covered by at least one test case, demonstrating the extent of the purpose for the respective requirement. The acceptance tests are in no way exhaustive of each feature’s functionality as such testing is assumed to be performed by the development team before each release. Instead, the test cases presented herein are simply meant to demonstrate that each requirement was met. Additional features not listed in the SRS that may be implemented in Webster Visualize will not be represented in this acceptance testing.
2. References

2.1 Team Visual Scrumware, Webster Visualize Project Plan, http://www.se.rit.edu/~scrumware/artifacts/January/WebsterVisualizeProjectPlan.doc
2.2 Team Visual Scrumware, Software Requirements Specification for Webster Visualize, http://www.se.rit.edu/~scrumware/artifacts/January/WebsterVisualizeSRS.doc
3. Environmental Needs

Webster Visualize will be tested on a Windows XP machine with Service Pack 2 and the Dot Net 2.0 Framework installed. The testing machine will need to have Webster Visualize installed along with the provided WTF XSD.
4. Approach
4.1 Functional Testing

Each of the functional system requirements defined in the Webster Visualize SRS is covered by functional test cases. These test cases are organized by feature and the features are organized by priority.
4.2 Non-Functional Testing

Test cases for non-functional requirements defined in the Webster Visualize SRS are provided in section 7. These test cases deal almost entirely without specific features of the application, but instead take measurements and simulate adverse effects to ensure that the desired results are produced. Modifiability and Usability are different than the other test cases in the sense that they involve direct inspection of the system and user interaction respectively. Modifiability is checked by making sure the delivered system meets the desired standards for ease of future development. Usability is tested by having users perform certain high frequency tasks and completing a survey about the experience. The results of these surveys are then measured against the customer’s predetermined satisfaction rating.
5. Test Deliverables

As a result of acceptance testing, the client and developers will produce this document and user surveys. This acceptance test plan will be delivered with each test having been run and indicated as either satisfactory (√) or unsatisfactory (X). Unsatisfactory test cases will be considered to be failed, and the actual output should be provided for the purpose of remediation. User surveys will be completed in house by the client so as to ensure that all potential users are under a Non-Disclosure Agreement.
6. Functional Test Cases

6.1 High-Priority

6.1.1 Application Startup/Shutdown

	Test Case ID:
	HP-1.01
	Requirement:
	Application.Startup

Application.Startup.New

	Description:
	User opens the application by double-clicking the executable.

	Preparation:
	1. Windows must be running
2. No previous instance of Webster Visualize is already running

	Test Procedure:
	1. Navigate to the system executable
2. Run the executable through the Windows Explorer

	Input:
	Double-click the executable
	√
	X

	Expected Output:
	The system initializes with no state XML or artifacts
	Actual Output:
	

	Test Case ID:
	HP-1.02
	Requirement:
	Application.Startup.Open

	Description:
	User opens the application by double-clicking a test file associated with Webster Visualize within Windows Explorer.

	Preparation:
	1. Windows must be running

2. No previous instance of Webster Visualize is already running

3. A test file must exist on disk

	Test Procedure:
	1. Navigate to the test file within Windows Explorer

2. Open the test file associated with Webster Visualize

	Input:
	Double-click the test file
	√
	X

	Expected Output:
	The system initializes and opens the test file, validating as appropriate
	Actual Output:
	

	Test Case ID:
	HP-1.03
	Requirement:
	Application.Shutdown

	Description:
	User closes the application when no test files are open.

	1. Preparation:
	2. An instance of Webster Visualize is already running

3. No test file is opened within the application

	Test Procedure:
	1. Close the application via the title bar of the window
-or-

2. Close the application via the method provided by the application

	Input:
	Click on the X in the title bar of the window
	√
	X

	Expected Output:
	The system closes without any apparent errors.
	Actual Output:
	

	Input:
	Navigate the File menu to select the Exit option
	√
	X

	Expected Output:
	The system closes without any apparent errors.
	Actual Output:
	

	Test Case ID:
	HP-1.04
	Requirement:
	Application.Shutdown.Close

	Description:
	User closes the application while an unchanged test file is open.

	Preparation:
	1. An unchanged test file is running in an instance of the application

	Test Procedure:
	1. Close the application via the title bar of the window
-or-
2. Close the application via the method provided by the application

	Input:
	Click on the X in the title bar of the window
	√
	X

	Expected Output:
	The system closes without any apparent errors.
	Actual Output:
	

	Input:
	Navigate the File menu to select the Exit option
	√
	X

	Expected Output:
	The system closes without any apparent errors.
	Actual Output:
	

	Test Case ID:
	HP-1.05
	Requirement:
	Application.Shutdown.Close

	Description:
	User closes the application while a modified test file is open.

	Preparation:
	1. A modified test file is running in an instance of the application

	Test Procedure:
	1. Close the application via the title bar of the window

-or-

2. Close the application via the method provided by the application

	Input:
	Click on the X in the title bar of the window
	√
	X

	Expected Output:
	The system prompts the user to save the modified test file before closing the application.
	Actual Output:
	

	Input:
	Navigate the File menu to select the Exit option
	√
	X

	Expected Output:
	The system prompts the user to save the modified test file before closing the application.
	Actual Output:
	

6.1.2 Create New Test Case

	Test Case ID:
	HP-2.01
	Requirement:
	New.TestCase

New.Populate

	Description:
	User creates a new test case with all the required fields available.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance

	Test Procedure:
	1. Request to create a new test case within the application
2. Check the resulting XML through the inline editor or by saving the test case as XML and looking directly at the code

	Input:
	Select the Create New Test Case option
	√
	X

	Expected Output:
	The system produces an XML shell containing client, provider, provider service, category, sequence, and test data elements. The canvas and toolboxes appear ready to draw.
	Actual Output:
	

	Test Case ID:
	HP-2.02
	Requirement:
	New.TestCase

New.TestCase.Open

	Description:
	User creates a new test case when an unchanged test file is open.

	Preparation:
	1. An instance of Webster Visualize is running

2. An unchanged test file is open within the instance

	Test Procedure:
	1. Request to create a new test case within the application

	Input:
	Select the Create New Test Case option
	√
	X

	Expected Output:
	The unchanged test file is closed and a new test case is created.
	Actual Output:
	

	Test Case ID:
	HP-2.03
	Requirement:
	New.TestCase

New.TestCase.Open

	Description:
	User creates a new test case when a modified test file is open.

	Preparation:
	1. An instance of Webster Visualize is running

2. A modified test file is open within the instance

	Test Procedure:
	1. Request to create a new test case within the application

	Input:
	Select the Create New Test Case option
	√
	X

	Expected Output:
	The system prompts the user to save the modified test file. Once the modified test file is closed, a new test case is created.
	Actual Output:
	

6.1.3 Open Test Case

	Test Case ID:
	HP-3.01
	Requirement:
	Open.Close

	Description:
	User opens a test case when an unchanged test file is open.

	Preparation:
	1. An instance of Webster Visualize is running

2. An unchanged test file is open within the instance

	Test Procedure:
	1. Request to open a new test case within the application

2. Select a file to be opened

	Input:
	Select a file and tell the system to open it
	√
	X

	Expected Output:
	The unchanged test file is closed and the selected test case is opened.
	Actual Output:
	

	Test Case ID:
	HP-3.02
	Requirement:
	Open.Close

	Description:
	User opens a test case when a modified test file is open.

	Preparation:
	1. An instance of Webster Visualize is running

2. A modified test file is open within the instance

	Test Procedure:
	1. Request to open a new test case within the application

2. Select a file to be opened

	Input:
	Select a file and tell the system to open it
	√
	X

	Expected Output:
	The system prompts the user to save the modified test file. Once the modified test file is closed, the selected test case is opened.
	Actual Output:
	

	Test Case ID:
	HP-3.03
	Requirement:
	Open.Validate
Open.Valid

Validate.XML

	Description:
	User opens a valid test case file.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance
3. A valid test case file exists on disk

	Test Procedure:
	1. Request to open a new test case within the application

2. Select a file that conforms to the WTF XSD

	Input:
	Select a valid file and tell the system to open it.
	√
	X

	Expected Output:
	The system opens the specified file, displaying a graphical flow chart without any errors.
	Actual Output:
	

	Test Case ID:
	HP-3.04
	Requirement:
	Open.Validate

Open.Invalid

Validate.XML

	Description:
	User opens an invalid test case file.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance

3. An invalid test case file exists on disk

	Test Procedure:
	1. Request to open a new test case within the application

2. Select a file that does not conform to the WTF XSD

	Input:
	Select an invalid file and tell the system to open it.
	√
	X

	Expected Output:
	The system reports the validation failure and then opens the file in the inline editor.
	Actual Output:
	

	Test Case ID:
	HP-3.05
	Requirement:
	Open.Unreadable

	Description:
	User opens a file that the system cannot read.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance

3. A file unreadable by the system exists on disk.

	Test Procedure:
	1. Request to open a new test case within the application

2. Select a file that cannot be read by the system

	Input:
	Select an unreadable file and tell the system to open it.
	√
	X

	Expected Output:
	The system alerts the user that the file is unreadable and does not open it.
	Actual Output:
	

	Test Case ID:
	HP-3.06
	Requirement:
	Open.ReadOnly

	Description:
	User opens a file that is marked as read-only.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance

3. A read-only file exists on disk.

	Test Procedure:
	1. Request to open a new test case within the application

2. Select a read-only file

	Input:
	Select a read-only file and tell the system to open it.
	√
	X

	Expected Output:
	The system alerts the user that the file is read-only before opening it.
	Actual Output:
	

6.1.4 Close Test File

	Test Case ID:
	HP-4.01
	Requirement:
	Close.TestFile

	Description:
	User closes an unchanged test file.

	Preparation:
	1. An unchanged test file is open within the application

	Test Procedure:
	1. Close the test file within the application

	Input:
	Select the Close File option
	√
	X

	Expected Output:
	The system closes the test file without closing the application, leaving no visuals or XML.
	Actual Output:
	

	Test Case ID:
	HP-4.02
	Requirement:
	Close.Changed

	Description:
	User closes a modified test file.

	Preparation:
	1. A modified test file is open within the application

	Test Procedure:
	1. Close the test file within the application

	Input:
	Select the Close File option
	√
	X

	Expected Output:
	The system prompts the user to save the test file before closing it.
	Actual Output:
	

	Test Case ID:
	HP-4.03
	Requirement:
	Close.Changed

Close.Changed.Save

	Description:
	User tells the system to save when closing a modified test file.

	Preparation:
	1. A modified test file is open within the application

	Test Procedure:
	1. Close the test file within the application

2. Request the system to save when prompted

	Input:
	Select the Save option at the system prompt
	√
	X

	Expected Output:
	The system saves the test file to disk before closing the test file.
	Actual Output:
	

	Test Case ID:
	HP-4.04
	Requirement:
	Close.Changed

Close.Changed.Ignore

	Description:
	User tells the system to ignore unsaved changes when closing a modified test file.

	Preparation:
	1. A modified test file is open within the application

	Test Procedure:
	1. Close the test file within the application

2. Request the system to ignore unsaved changes when prompted

	Input:
	Select the Ignore option at the system prompt
	√
	X

	Expected Output:
	The system closes the test file without saving.
	Actual Output:
	

	Test Case ID:
	HP-4.05
	Requirement:
	Close.Changed

Close.Changed.Fail

	Description:
	User attempts to save changes to a read-only test file.

	Preparation:
	1. A modified read-only test file is open within the application

	Test Procedure:
	1. Close the test file within the application

2. Request the system to save when prompted

	Input:
	Select the Save option at the system prompt
	√
	X

	Expected Output:
	The system fails to save the test file and the test file remains open.
	Actual Output:
	

6.1.5 Validate XML Test Case

	Test Case ID:
	HP-5.01
	Requirement:
	Validate.XML

Validate.Fail

	Description:
	User opens a file that does not contain valid XML.

	Preparation:
	1. An instance of Webster Visualize is running

2. A file that contains invalid XML exists on disk

	Test Procedure:
	1. Request to open a file within the application

2. Select a file that contains invalid XML

	Input:
	Select a file with invalid XML and tell the system to open it
	√
	X

	Expected Output:
	The system validates the XML and reports to the user that the XML tags are invalid.
	Actual Output:
	

	Test Case ID:
	HP-5.02
	Requirement:
	Validate.XML

Validate.Fail

	Description:
	User opens a file with a discrepancy in the required elements.

	Preparation:
	1. An instance of Webster Visualize is running

2. A file with a discrepancy in the required elements exists on disk

	Test Procedure:
	1. Request to open a file within the application

2. Select a file with a discrepancy in the required elements

	Input:
	Select a file with invalid required elements and select Open
	√
	X

	Expected Output:
	The system validates the XML and reports to the user that the something in the required elements is invalid.
	Actual Output:
	

	Test Case ID:
	HP-5.03
	Requirement:
	Validate.XML

Validate.Fail

	Description:
	User opens a file that contains elements not in the XSD.

	Preparation:
	1. An instance of Webster Visualize is running

2. A file that contains elements not in the XSD exists on disk

	Test Procedure:
	1. Request to open a file within the application

2. Select a file that elements not in the XSD

	Input:
	Select a file with unknown elements and tell the system to open it
	√
	X

	Expected Output:
	The system validates the XML and reports to the user that there are unknown elements.
	Actual Output:
	

	Test Case ID:
	HP-5.04
	Requirement:
	Validate.XML

Validate.Fail

	Description:
	User opens a file containing values not allowed by the XSD.

	Preparation:
	1. An instance of Webster Visualize is running

2. A file that contains invalid element values exists on disk

	Test Procedure:
	1. Request to open a file within the application

2. Select a file that contains invalid element values

	Input:
	Select a file with invalid values and tell the system to open it
	√
	X

	Expected Output:
	The system validates the XML and reports to the user that elements contain invalid values.
	Actual Output:
	

	Test Case ID:
	HP-5.05
	Requirement:
	Validate.XML

Validate.Fail.Editor

Editor.Write

	Description:
	User opens an invalid file and views it in the inline XML editor.

	Preparation:
	1. An instance of Webster Visualize is running

2. An invalid file exists on disk

	Test Procedure:
	1. Request to open a file within the application

2. Select an invalid file

3. Acknowledge system message

	Input:
	Acknowledge the static message reporting file invalidity.
	√
	X

	Expected Output:
	The system displays the inline XML editor filled with the contents of the invalid file.
	Actual Output:
	

6.1.6 Generate Graphical Representation

	Test Case ID:
	HP-6.01
	Requirement:
	Visualize.Artifacts

Visualize.Relations

Visualize.Relations.Sequence

Visuzlize.Tooltips

	Description:
	User opens a valid test case and views the graphical representation of the contained items as well as their sequence.

	Preparation:
	1. An instance of Webster Visualize is running

2. A valid test case file containing at least one of every element artifact exists on disk

	Test Procedure:
	1. Load the valid test file using the open feature
2. View the graphical representation of the test case artifacts
3. Pause the mouse icon over each artifact
4. View the graphical representation of the test case sequence

	Input:
	View the graphical representation of the test case artifacts
	√
	X

	Expected Output:
	The shape of each element artifact is unique for its type and the placement of each conforms to Visualize.Relations in the SRS.
	Actual Output:
	

	Input:
	Pause the mouse icon over each artifact
	√
	X

	Expected Output:
	The system displays mouse tooltips with unique information for each artifact.
	Actual Output:
	

	Input:
	View the graphical representation of the test case sequence
	√
	X

	Expected Output:
	Unidirectional arrows connect a starting point to the first item in the sequence, each consecutive item, and finally the last item to the ending point.
	Actual Output:
	

	Test Case ID:
	HP-6.02
	Requirement:
	Visualize.Invalid

	Description:
	User attempts to view the graphical representation of an invalid file.

	Preparation:
	1. An instance of Webster Visualize is running

2. An invalid test case file exists on disk

	Test Procedure:
	1. Load the invalid test case file using the open feature

	Input:
	Load the invalid test case file using the open feature
	√
	X

	Expected Output:
	The system reports that it can’t generate a graphical representation and the canvas is unreachable.
	Actual Output:
	

6.1.7 Edit Graphical Representation

	Test Case ID:
	HP-7.01
	Requirement:
	Visualize.Add.Artifacts

Visualize.Add.Populate

Visualize.Add.Relations

Editor.Write

	Description:
	User gradually builds a test case by adding new element artifacts.

	Preparation:
	1. An instance of Webster Visualize is running

	Test Procedure:
	1. Begin a new test case using the create test case feature
2. Save the test case to an original file on disk

3. Drag a new transaction group artifact onto the canvas
4. Examine the XML in the editor to confirm addition
5. Save the test case to a file to be compared against the original

6. Drag a new validation artifact into the transaction group’s validation artifact
7. Examine the XML in the editor to confirm addition
8. Save the test case to a file to be compared against the original

9. Drag a new validation point artifact into the validation artifact
10. Examine the XML in the editor to confirm addition
11. Save the test case to a file to be compared against the original

12. Drag a new parameter artifact into the transaction group’s transaction artifact
13. Examine the XML in the editor to confirm addition
14. Save the test case to a file to be compared against the original

15. Drag a new imported test case artifact onto the canvas
16. Examine the XML in the editor to confirm addition
17. Save the test case to a file to be compared against the original

	Input:
	Drag a new transaction group artifact onto the canvas
	√
	X

	Expected Output:
	The artifact is populated with both a transaction and a validation artifact; default values are given in both the state XML and the saved file.
	Actual Output:
	

	Input:
	Drag a new validation artifact into the existing validation artifact
	√
	X

	Expected Output:
	The new artifact renders within the existing one; default values are given in both the state XML and the saved file.
	Actual Output:
	

	Input:
	Drag a new validation point artifact into the validation artifact
	√
	X

	Expected Output:
	The new artifact renders within the existing one; default values are given in both the state XML and the saved file.
	Actual Output:
	

	Input:
	Drag a new parameter artifact into the existing transaction artifact
	√
	X

	Expected Output:
	The new artifact renders within the existing one; default values are given in both the state XML and the saved file.
	Actual Output:
	

	Input:
	Drag a new imported test case artifact onto the canvas
	√
	X

	Expected Output:
	The system prompts the user to identify the test case; the values are given in both the state XML and the saved file.
	Actual Output:
	

	Test Case ID:
	HP-7.02
	Requirement:
	Visualize.Add.Relations

Editor.Write

	Description:
	User attempts to add artifacts where they should not go.

	Preparation:
	1. A test case containing at least one transaction group is running in an instance of Webster Visualize

	Test Procedure:
	1. Drag a new validation artifact into the transaction group’s transaction artifact
2. Examine the XML in the editor to confirm no addition happened
3. Save the test case to a file to be compared against the original

4. Drag a new validation point artifact into the transaction group’s transaction artifact
5. Examine the XML in the editor to confirm no addition happened
6. Save the test case to a file to be compared against the original

7. Drag a new parameter artifact into the transaction group’s validation artifact
8. Examine the XML in the editor to confirm no addition happened
9. Save the test case to a file to be compared against the original

	Input:
	Drag a new validation artifact into the existing transaction artifact
	√
	X

	Expected Output:
	No artifact appears on the canvas and no XML is generated in the either the state XML or file.
	Actual Output:
	

	Input:
	Drag a new validation point artifact into the transaction artifact
	√
	X

	Expected Output:
	No artifact appears on the canvas and no XML is generated in the either the state XML or file.
	Actual Output:
	

	Input:
	Drag a new parameter artifact into the existing transaction artifact
	√
	X

	Expected Output:
	No artifact appears on the canvas and no XML is generated in the either the state XML or file.
	Actual Output:
	

	Test Case ID:
	HP-7.03
	Requirement:
	Visualize.Edit.Sequence

Editor.Write

	Description:
	User adds, moves, and deletes a transaction group within a sequence.

	Preparation:
	1. A test case containing at least one transaction group and one imported test case is running in an instance of Webster Visualize

	Test Procedure:
	1. Create a new transaction group without any sequencing

2. Save the test case to an original file on disk

3. Add the new transaction group to the sequence

4. Examine the XML in the editor to confirm the sequence edit
5. Save the test case to a file to be compared against the original

6. Drag the transaction group to a new location within the sequence

7. Examine the XML in the editor to confirm the sequence edit
8. Save the test case to a file to be compared against the original

9. Delete the transaction group artifact from the sequence view

10. Examine the XML in the editor to confirm the sequence edit
11. Save the test case to a file to be compared against the original

	Input:
	Add the new transaction group to the sequence
	√
	X

	Expected Output:
	The artifact appears connected to the surrounding artifacts, and sequence tags are updated within the state XML and the saved file.
	Actual Output:
	

	Input:
	Drag the transaction group to a new location within the sequence
	√
	X

	Expected Output:
	The artifact appears connected to the surrounding artifacts, and sequence tags are updated within the state XML and the saved file.
	Actual Output:
	

	Input:
	Delete the transaction group artifact from the sequence view
	√
	X

	Expected Output:
	The arrows connect the surrounding artifacts and the sequence tags reflect no sequence for the transaction group in the state XML and file.
	Actual Output:
	

	Test Case ID:
	HP-7.04
	Requirement:
	Visualize.Edit.Artifacts

Editor.Write

	Description:
	User changes the property values of artifacts within a test case.

	Preparation:
	1. A test case containing at least one of each element artifact is running in an instance of the application

	Test Procedure:
	1. Change the values found in the parameter artifact
2. Examine the XML in the editor to confirm the edit
3. Save the test case to a file to be compared against the original

4. Change the values found in the validation point artifact
5. Examine the XML in the editor to confirm the edit
6. Save the test case to a file to be compared against the original

7. Change the values found in the validation artifact
8. Examine the XML in the editor to confirm removal
9. Save the test case to a file to be compared against the original

10. Change the values found in the imported test case artifact
11. Examine the XML in the editor to confirm removal
12. Save the test case to a file to be compared against the original

13. Change the values found in the transaction group artifact
14. Examine the XML in the editor to confirm removal
15. Save the test case to a file to be compared against the original

	Input:
	Change the values found in the parameter artifact
	√
	X

	Expected Output:
	The visuals update with the new information along with the state XML and the saved file.
	Actual Output:
	

	Input:
	Change the values found in the validation point artifact
	√
	X

	Expected Output:
	The visuals update with the new information along with the state XML and the saved file.
	Actual Output:
	

	Input:
	Change the values found in the validation artifact
	√
	X

	Expected Output:
	The visuals update with the new information along with the state XML and the saved file.
	Actual Output:
	

	Input:
	Change the values found in the imported test case artifact
	√
	X

	Expected Output:
	The visuals update with the new information along with the state XML and the saved file.
	Actual Output:
	

	Input:
	Change the values found in the transaction group artifact
	√
	X

	Expected Output:
	The visuals update with the new information along with the state XML and the saved file.
	Actual Output:
	

	Test Case ID:
	HP-7.05
	Requirement:
	Visualize.Edit.Relations

Editor.Write

	Description:
	User moves nested artifacts between transaction group artifacts and within transaction group artifacts.

	Preparation:
	1. A test case with two transaction groups, each containing at least one validation point and parameter artifact, and one containing two validations, is running in an instance of Webster Visualize.

	Test Procedure:
	1. Cut a validation artifact from the transaction group containing two validation artifacts
2. Paste the validation artifact into the other transaction group

3. Examine the XML in the editor to confirm the change
4. Save the test case to a file to be compared against the original

5. Drag a validation point artifact from one validation to another

6. Examine the XML in the editor to confirm the change
7. Save the test case to a file to be compared against the original

8. Drag one validation artifact within the other validation artifact
9. Examine the XML in the editor to confirm the change
10. Save the test case to a file to be compared against the original

11. Cut a parameter artifact from the transaction artifact in one transaction group artifact
12. Paste the parameter artifact into the transaction artifact in the other transaction group artifact
16. Examine the XML in the editor to confirm the change
17. Save the test case to a file to be compared against the original

	Input:
	Paste the validation artifact into the other transaction group
	√
	X

	Expected Output:
	The artifact appears in the new location and the tags move appropriately within the state XML as well as the saved file.
	Actual Output:
	

	Input:
	Drag a validation point artifact from one validation to another
	√
	X

	Expected Output:
	The artifact appears in the new location and the tags move appropriately within the state XML as well as the saved file.
	Actual Output:
	

	Input:
	Drag one validation artifact within the other validation artifact
	√
	X

	Expected Output:
	The artifact appears in the new location and the tags move appropriately within the state XML as well as the saved file.
	Actual Output:
	

	Input:
	Paste the parameter artifact into the other transaction artifact
	√
	X

	Expected Output:
	The artifact appears in the new location and the tags move appropriately within the state XML as well as the saved file.
	Actual Output:
	

	Test Case ID:
	HP-7.06
	Requirement:
	Visualize.Edit.Constraints

Editor.Write

	Description:
	User alters the test data in a separate viewing window.

	Preparation:
	1. A valid test case containing test data is running in an instance of Webster Visualize.

	Test Procedure:
	1. Navigate to the test data editor

2. Edit the values found within the test data entries

3. Examine the XML in the editor to confirm the change
4. Save the test case to a file to be compared against the original

	Input:
	Edit the values found within the test data entries
	√
	X

	Expected Output:
	The respective values within the tags of the state XML and the saved file update accordingly.
	Actual Output:
	

	Test Case ID:
	HP-7.07
	Requirement:
	Visualize.Undo

Visualize.Undo.Persist

Visualize.Undo.Setting

Visualize.Redo

	Description:
	User sets the undo stack maximum before making changes, undoing them, and then redoing them once again.

	Preparation:
	1. A valid test case is running in an instance of the application

	Test Procedure:
	1. Navigate to the application settings
2. Set the maximum number of undo actions to a desired value

3. Perform a number of actions equal to the undo maximum

4. Save the test case to a file to be compared against later

5. Undo each of the actions until the undo stack is empty

6. Save the test case to a file to be compared against the original

7. Redo each of the actions until the redo stack is empty

8. Save the test case to a file to compare against the file in step 4

	Input:
	Undo each of the actions until the undo stack is empty
	√
	X

	Expected Output:
	The system reverses a number of actions equal to the set maximum in an order opposite the order they were done; the saved file is identical to the original
	Actual Output:
	

	Input:
	Redo each of the actions until the redo stack is empty
	√
	X

	Expected Output:
	The system performs the actions in the order they were done originally; the file is identical to the one saved in step 4
	Actual Output:
	

6.1.8 Delete Graphical Representation

	Test Case ID:
	HP-8.01
	Requirement:
	Visualize.Delete.Artifacts

Editor.Write

	Description:
	User deletes element artifacts from a test case.

	Preparation:
	1. A test case containing at least one of each element artifact and two validation artifacts is running in an application instance

	Test Procedure:
	1. Delete a parameter artifact
2. Examine the XML in the editor to confirm removal
3. Save the test case to a file to be compared against the original
4. Delete a validation point artifact
5. Examine the XML in the editor to confirm removal
6. Save the test case to a file to be compared against the original

7. Delete a validation artifact that is not the root validation artifact
8. Examine the XML in the editor to confirm removal
9. Save the test case to a file to be compared against the original

10. Delete a test data entry artifact
11. Examine the XML in the editor to confirm removal
12. Save the test case to a file to be compared against the original

13. Delete an imported test case artifact
14. Examine the XML in the editor to confirm removal
15. Save the test case to a file to be compared against the original

16. Delete a transaction group artifact
17. Examine the XML in the editor to confirm removal
18. Save the test case to a file to be compared against the original

	Input:
	Delete a parameter artifact.
	√
	X

	Expected Output:
	The artifact disappears from the canvas and its corresponding XML is removed from both state XML and the new file.
	Actual Output:
	

	Input:
	Delete a validation point artifact.
	√
	X

	Expected Output:
	The artifact disappears from the canvas and its corresponding XML is removed from both state XML and the new file.
	Actual Output:
	

	Input:
	Delete a validation artifact that is not the root validation artifact.
	√
	X

	Expected Output:
	The artifact disappears from the canvas and its corresponding XML is removed from both state XML and the new file.
	Actual Output:
	

	Input:
	Delete a test data entry artifact.
	√
	X

	Expected Output:
	The artifact disappears from the canvas and its corresponding XML is removed from both state XML and the new file.
	Actual Output:
	

	Input:
	Delete an imported test case artifact.
	√
	X

	Expected Output:
	The artifact disappears from the canvas and its corresponding XML is removed from both state XML and the new file.
	Actual Output:
	

	Input:
	Delete a transaction group artifact.
	√
	X

	Expected Output:
	The artifact disappears from the canvas and its corresponding XML is removed from both state XML and the new file.
	Actual Output:
	

	Test Case ID:
	HP-8.02
	Requirement:
	Visualize.Delete.Relations

Editor.Write

	Description:
	User deletes a validation artifact and a transaction group artifact, which contain other nested artifacts.

	Preparation:
	1. A test case containing a transaction group artifact with multiple nested artifacts and a separate validation artifact with multiple nested artifacts is running in an instance of the application.

	Test Procedure:
	1. View the test case canvas
2. Delete the validation artifact
3. Examine the XML in the editor to confirm removal

4. Save the test case to a file to be compared against the original
5. Delete the transaction group artifact
6. Examine the XML in the editor to confirm removal

7. Save the test case to a file to be compared against the original

	Input:
	Delete the validation artifact
	√
	X

	Expected Output:
	The artifact and all nested artifacts are removed from the canvas, and respective XML is removed from both the state XML and the new file.
	Actual Output:
	

	Input:
	Delete the transaction group artifact
	√
	X

	Expected Output:
	The artifact and all nested artifacts are removed from the canvas, and respective XML is removed from both the state XML and the new file.
	Actual Output:
	

	Test Case ID:
	HP-8.03
	Requirement:
	Visualize.Delete.Sequence

Editor.Write

	Description:
	User deletes transaction group and imported test case artifacts from within a sequence.

	Preparation:
	3. A test case containing transaction group and imported test case artifacts within a sequence is running in an application instance

	Test Procedure:
	1. View the sequence representation

2. Delete a transaction group artifact
3. Examine the XML in the editor to confirm updated sequence

4. Save the test case to a file to be compared against the original
5. Delete an imported test case artifact
6. Examine the XML in the editor to confirm updated sequence

7. Save the test case to a file to be compared against the original

	Input:
	Delete a transaction group artifact from the sequence
	√
	X

	Expected Output:
	The artifact disappears from the sequence, the surrounding artifacts connect in its place, and sequence XML elements are updated accordingly.
	Actual Output:
	

	Input:
	Delete an imported test case artifact from the sequence
	√
	X

	Expected Output:
	The artifact disappears from the sequence, the surrounding artifacts connect in its place, and sequence XML elements are updated accordingly.
	Actual Output:
	

6.1.9 Save Test Case

	Test Case ID:
	HP-9.01
	Requirement:
	Save.Unnamed
Save.Extension

Suite.Save

Suite.Proprietary

	Description:
	User provides a name under which the system saves a previously unsaved test file.

	Preparation:
	1. A previously unsaved test file is running within an instance of Webster Visualize

	Test Procedure:
	1. Request to save the opened test file
2. Provide a unique name for the file save procedure
3. Confirm the filename by viewing it in Windows Explorer

	Input:
	Provide a unique name during the file save procedure
	√
	X

	Expected Output:
	The file is successfully saved under the given name and with the appropriate extension.
	Actual Output:
	

	Test Case ID:
	HP-9.02
	Requirement:
	Save.Named

Save.Extension

Suite.Save

Suite.Proprietary

	Description:
	User saves a previously saved test file under a new name.

	Preparation:
	1. A previously saved test file is running within an instance of Webster Visualize

	Test Procedure:
	1. Request to save the opened test file under a different name
2. Provide a unique name for the file save procedure
3. Confirm the filename by viewing it in Windows Explorer

	Input:
	Provide a unique name during the file save procedure
	√
	X

	Expected Output:
	The file is successfully saved under the given name and with the appropriate extension.
	Actual Output:
	

	Test Case ID:
	HP-9.03
	Requirement:
	Save.Valid

	Description:
	User saves a visual test case as XML

	Preparation:
	1. A test case is running in an instance of Webster Visualize

	Test Procedure:
	1. Place one of each element artifact within the test case
2. Provide appropriate data for each element artifact
3. Save the test case

4. View the contents of the saved file to verify the saved XML

	Input:
	Save the test case
	√
	X

	Expected Output:
	The saved test case contains XML that conforms to the structure and data provided in steps 1 & 2.
	Actual Output:
	

	Test Case ID:
	HP-9.04
	Requirement:
	Save.Invalid

	Description:
	User saves a test case that does not conform to the WTF XSD.

	Preparation:
	1. A test case is running in an instance of Webster Visualize

	Test Procedure:
	1. Edit the test case XML in the inline editor to fail validation
2. Request to save the test case

	Input:
	Request to save the test case
	√
	X

	Expected Output:
	The system requests confirmation before saving the invalid test case.
	Actual Output:
	

	Test Case ID:
	HP-9.05
	Requirement:
	Save.Failed

Suite.Save

	Description:
	User attempts to save a test file to a read-only area on disk.

	Preparation:
	1. A test file is running in an instance of Webster Visualize

2. A read-only directory exists on the operating disk

	Test Procedure:
	1. Request to save the test file to a specified region on disk

2. Specify the read-only directory as the target directory

3. Save the test file.

	Input:
	Save the test file.
	√
	X

	Expected Output:
	The system displays a static message regarding its inability to save.
	Actual Output:
	

6.2 Medium-Priority

6.2.1 Comment Graphical Representation
	Test Case ID:
	MP-1.01
	Requirement:
	Visualize.Comment

Debug.Display

	Description:
	User adds comment artifacts to an existing test case.

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

	Test Procedure:
	1. Navigate to the text debugger. Record the current textual representation of the valid test file.

2. Navigate to the graphical transaction group editor

3. Select the comment artifact from the toolbox

4. Add a comment artifact to an existing transaction group

5. Add a comment artifact to an existing validation point

6. Add a comment artifact to an existing parameter group

7. Record the current validation status visible in the status bar

8. Navigate to the text debugger. Record the current textual representation of the test file.

	Input:
	The valid test file is modified and now contains 3 comment artifacts.
	√
	X

	Expected Output:
	The status bar within the graphical transaction group editor states that the XML is valid. The text debugger appears with the same textual representation in the last step as in step 1.
	Actual Output:
	

	Test Case ID:
	MP-1.02
	Requirement:
	Visualize.Comment.Edit

	Description:
	User edits an existing comment artifact in an existing test case.

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Add a comment artifact to an existing transaction group element

	Test Procedure:
	1. Select the comment artifact by double-click
2. Type new text in place within that comment artifact

	Input:
	The valid test file now contains a comment with text
	√
	X

	Expected Output:
	The status bar within the graphical transaction group editor states that the XML is valid. The comment artifact contains new text in step 2.
	Actual Output:
	

	Test Case ID:
	MP-1.03
	Requirement:
	Visualize.Comment.Delete

	Description:
	User deletes an existing comment artifact in an existing test case.

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize. This test file contains no comment artifacts.

2. Add a comment artifact to an existing transaction group element

	Test Procedure:
	1. Select the comment artifact by single-click

2. Select ‘Delete’ from the toolbar

3. Navigate to the XML inline editor

4. Examine the file for traces of the comment artifact

	Input:
	The valid test file has no comment artifacts
	√
	X

	Expected Output:
	The status bar within the graphical transaction group editor states that the XML is valid. All evidence of adding and removing the comment artifact has been removed.
	Actual Output:
	

	Test Case ID:
	MP-1.04
	Requirement:
	Visualize.Comment.Relations

	Description:
	User copies and moves an existing comment artifact in an existing test case between test case elements.

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize.

2. Add a comment artifact to an existing transaction group element

	Test Procedure:
	1. Select the comment artifact by single-click.

2. Drag-and-drop the comment artifact from one transaction group to another.

3. Drag-and-drop the comment artifact from the new transaction group to a validation point.

4. If the comment artifact is still selected, click the copy button. Otherwise, select the comment artifact by left-click and then click the copy button.

5. Right-click in the original transaction group and select ‘Paste’

6. Modify the text contained in this new comment artifact

	Input:
	The valid test file has no comment artifacts
	√
	X

	Expected Output:
	The valid test file contains two comments, each with different text.
	Actual Output:
	

6.2.2 Auto-Save Test Case
	Test Case ID:
	MP-2.01
	Requirement:
	Temporary.Save

Temporary.Save.Files

	Description:
	Test the auto-save feature on a new file that has not been saved

	Preparation:
	1. An instance of Webster Visualize is running

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Wait 5 minutes, or the auto-save interval

4. Open windows explorer

5. Navigate to the application directory for Webster Visualize

6. Verify that a new temporary file exists for the unsaved test case

	Input:
	An incomplete test case is created
	√
	X

	Expected Output:
	A new temporary file exists in the application directory
	Actual Output:
	

	Test Case ID:
	MP-2.02
	Requirement:
	Temporary.Save

Temporary.Save.Files

	Description:
	Test the auto-save feature on an existing test case

	Preparation:
	1. A test file is open in an instance of Webster Visualize

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Wait 5 minutes, or the auto-save interval

4. Open windows explorer

5. Navigate to the folder where the test case being edited exists

6. Verify that a new temporary file exists for the unsaved test case

	Input:
	A previously complete test case is modified
	√
	X

	Expected Output:
	A new temporary file exists in the test case folder
	Actual Output:
	

	Test Case ID:
	MP-2.03
	Requirement:
	Temporary.Save.Config

	Description:
	Configure auto-save intervals for the auto-save feature

	Preparation:
	1. A test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Open windows explorer

4. Navigate to the folder where the test case being edited exists

5. Wait 1 minute

6. Verify that a temporary file exists for the test case

7. Record the last modified time of the file

8. Wait 1 minute

9. Record the last modified time of the file

	Input:
	Auto-save interval has been changed from default to 1 minute
	√
	X

	Expected Output:
	The temporary file is modified once per minute
	Actual Output:
	

	Test Case ID:
	MP-2.04
	Requirement:
	Temporary.Delete

	Description:
	Ensure temporary files are deleted when test case is saved

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Open windows explorer

4. Navigate to the folder where the test case being edited exists

5. Wait 1 minute

6. Verify that a temporary file exists for the test case

7. Delete the characters that you have entered into the editor in step 2

8. Click the save button

9. Verify that the temporary file that existed in step 6 no longer exists

	Input:
	A test case is saved to a file after modifications were made to it
	√
	X

	Expected Output:
	A temporary file is created and then deleted once the test case is saved
	Actual Output:
	

	Test Case ID:
	MP-2.05
	Requirement:
	Temporary.Delete

	Description:
	Ensure temporary files are deleted when test case is closed

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Open windows explorer

4. Navigate to the folder where the test case being edited exists

5. Wait 1 minute

6. Verify that a temporary file exists for the test case

7. Select ‘Close Test Case’

8. Instruct Webster Visualize that you do not wish to save changes

9. Verify that the temporary file that existed in step 6 no longer exists

	Input:
	A test case is closed after modifications were made to it
	√
	X

	Expected Output:
	A temporary file is created and then deleted once the test case is closed
	Actual Output:
	

	Test Case ID:
	MP-2.06
	Requirement:
	Temporary.Delete.Deleted

	Description:
	Ensure no error messages appear if a temporary file is deleted from outside the application

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Open windows explorer

4. Navigate to the folder where the test case being edited exists

5. Wait 1 minute

6. Verify that a temporary file exists for the test case

7. Delete the temporary file from within windows explorer

8. Select ‘Close Test Case’

	Input:
	A test case is closed after modifications were made to it and the temporary file for that test case is deleted
	√
	X

	Expected Output:
	No error messages or exception messages appear to the end user. The application is in its startup state.
	Actual Output:
	

	Test Case ID:
	MP-2.07
	Requirement:
	Temporary.Delete.Fail

	Description:
	User is notified when an existing temporary file could not be deleted

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Open windows explorer

4. Navigate to the folder where the test case being edited exists

5. Wait 1 minute

6. Verify that a temporary file exists for the test case

7. Set the directory to read only for the user that is running Webster Visualize

8. Select ‘Close Test Case’

9. Instruct Webster Visualize that you do not wish to save changes

	Input:
	A test case is closed after modifications were made to it
	√
	X

	Expected Output:
	A temporary file is created for the modifications. Upon test case closure, a popup dialog appears explaining that the temporary file could not be deleted.
	Actual Output:
	

	Test Case ID:
	MP-2.08
	Requirement:
	Temporary.Save.Fail

Temporary.Save.Fail.Recover

	Description:
	User is notified the first time a temporary save cannot take place, and the first time a temporary save can take place after that point in time

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize, unmodified since opened

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Open windows explorer

2. Navigate to the folder where the test case being edited exists

3. Verify that no temporary files exist for the test case in the editor

4. Set the directory to read only for the user that is running Webster Visualize

5. Navigate to the XML inline editor within Webster Visualize

6. Type any amount of characters, from 1 to 5

7. Wait 1 minute

8. Verify that a dialog pops up explaining that a temporary file could not be created

9. Wait 2 minutes

10. Verify that no further popup dialogs appear

11. Set the directory to read/write for the user that is running Webster Visualize

12. Wait 1 minute

13. Verify that a dialog pops up explaining that temporary files have been created

14. Wait 2 minutes

15. Verify that no further popup dialogs appear

	Input:
	A test case is modified, and the system attempts to save temporary files
	√
	X

	Expected Output:
	Popup dialogs appear at the precise points identified in the test procedure. No further windows appear that are of Webster Visualize origin.
	Actual Output:
	

	Test Case ID:
	MP-2.09
	Requirement:
	Temporary.Save.Fail

Temporary.Save.Fail.Recover

	Description:
	User is notified the first time a temporary save cannot take place after existing temporary saves have already been performed, and the first time a temporary save can take place from that point in time.

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize. It has been modified since opened, and a temporary file exists for it.

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Open windows explorer

2. Navigate to the folder where the test case being edited exists

3. Verify that a temporary file exists for the test case being edited

4. Set the directory to read only for the user that is running Webster Visualize

5. Navigate to the XML inline editor within Webster Visualize

6. Type any amount of characters, from 1 to 5

7. Wait 1 minute

8. Verify that a dialog pops up explaining that a temporary file could not be saved

9. Wait 2 minutes

10. Verify that no further popup dialogs appear

11. Set the directory to read/write for the user that is running Webster Visualize

12. Wait 1 minute

13. Verify that a dialog pops up explaining that temporary files have been saved

14. Wait 2 minutes

15. Verify that no further popup dialogs appear

	Input:
	A test case is modified, and the system attempts to save temporary files
	√
	X

	Expected Output:
	Popup dialogs appear at the precise points identified in the test procedure. No further windows appear that are of Webster Visualize origin.
	Actual Output:
	

	Test Case ID:
	MP-2.10
	Requirement:
	Temporary.Load

	Description:
	User is notified when temporary files exist when loading an existing test case, and loading from a temporary file does not force a save on the original

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Record the last modified date and time of the valid test file
2. Navigate to the XML inline editor

3. Type any amount of characters, from 1 to 5

4. Open windows explorer

5. Navigate to the folder where the test case being edited exists

6. Wait 1 minute

7. Verify that a temporary file exists for the test case

8. Copy that temporary file to an external directory

9. Close Webster Visualize without saving any changes

10. Copy the temporary file back to the directory where it originally existed

11. Start Webster Visualize

12. Re-open the exact same valid test file that was open during step 1

13. Verify that a popup appears explaining that the file you were editing has a more recent temporary file

14. Choose the ‘Restore from Temporary File’ option in the dialog

15. Verify that the characters entered in step 2 appear in the restoration

16. Verify that the Webster Visualize title bar contains the correct location of the original valid test file filename.

17. Record the last modified date and time of the valid test file
18. Verify that the times recorded in steps 1 and 17 are identical

19. Verify that the temporary file remains in the directory after the restoration process

	Input:
	A temporary file is created for test case modifications performed
	√
	X

	Expected Output:
	Modifications done before the simulated application crash are restored upon loading from the temporary file, leaving the user in the exact same position that they were in prior to the crash
	Actual Output:
	

	Test Case ID:
	MP-2.11
	Requirement:
	Temporary.Load.Fail

	Description:
	User is notified when corrupt temporary files exist when loading an existing test case

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

2. Configure Webster Visualize for a 1-minute auto-save interval

	Test Procedure:
	1. Navigate to the XML inline editor

2. Type any amount of characters, from 1 to 5

3. Open windows explorer

4. Navigate to the folder where the test case being edited exists

5. Wait 1 minute

6. Verify that a new temporary file has been created for these modifications.

7. Copy the temporary file to a new location

8. Exit Webster Visualize, discarding all changes

9. Copy the file opengl32.dll from the windows system directory to another temporary directory.

10. Rename the copy of opengl32.dll to the exact same name as the temporary file.

11. Copy the renamed opengl32.dll file to the folder where the test case will be edited.

12. Fire up Webster Visualize and open up the same valid test file
13. Verify that a popup appears that explains temporary files existed for the file but were invalid or corrupt, and will now be deleted.
14. Verify that no temporary files exist for the valid test file

	Input:
	A corrupt temporary file is introduced to the system
	√
	X

	Expected Output:
	Webster Visualize informs the user that the temporary file was corrupt and restoration cannot take place.
	Actual Output:
	

6.2.3 Text-Based Debugging

	Test Case ID:
	MP-3.01
	Requirement:
	Debug.Invalid

	Description:
	User modifies the test case so it does not conform to the XSD and then navigates to the debugger.

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

	Test Procedure:
	1. Navigate to the XML text editor of the application.

2. Add an element that does not match any element within the WTF XSD.

	Input:
	The valid test file is modified to make it an invalid test file.
	√
	X

	Expected Output:
	The system notifies the user that the test file is invalid and a debug representation cannot be shown.
	Actual Output:
	

	Test Case ID:
	MP-3.02
	Requirement:
	Debug.Display

Debug.Display.Parameters

Debug.Display.Validations

	Description:
	User views a valid test file in the text debugger

	Preparation:
	1. A valid test file is open in an instance of Webster Visualize

	Test Procedure:
	1. Add a single transaction group to the test case

2. Add two parameter groups to the transaction group

3. Add two validation points to the transaction group

4. Select ‘Debug Test Case’

	Input:
	The valid test file is sent to the textual debugger
	√
	X

	Expected Output:
	The system opens a new window displaying an accurate indented textual representation of the execution of the test case.
	Actual Output:
	

6.3 Low-Priority
6.3.1 Export Graphical Representation

	Test Case ID:
	LP-1.01
	Requirement:
	Export.Image

	Description:
	User saves the existing graphical representation as a JPEG file.

	Preparation:
	1. A test case with at least one of every element artifact is running in an instance of Webster Visualize

	Test Procedure:
	1. Request to save the test case as a JPEG file

2. Provide a unique name and save location

3. View the created file in a program that reads JPEG files.

	Input:
	Provide a unique name and save location
	√
	X

	Expected Output:
	The system creates a JPEG file with the given path that accurately conforms to the visual representation
	Actual Output:
	

	Test Case ID:
	LP-1.02
	Requirement:
	Export.Image.Fail

	Description:
	User attempts to save the graphical representation as a JPEG file in a read-only location on disk.

	Preparation:
	1. A test case is running in an instance of Webster Visualize

2. A read-only directory exists on the operating disk

	Test Procedure:
	1. Request to save the test case as a JPEG file

2. Specify the read-only directory as the target directory

	Input:
	Specify the read-only directory as the target directory
	√
	X

	Expected Output:
	The system displays a static message regarding its inability to export the test case.
	Actual Output:
	

6.3.2 Inline XML Editor

	Test Case ID:
	LP-2.01
	Requirement:
	Editor.Write

Editor.Tags

	Description:
	User loads a test case into the editor to view the underlying XML.

	Preparation:
	1. An instance of the Webster Visualize is running
2. A valid test case file exists on disk

	Test Procedure:
	1. Load the test case file using the open feature
2. View the inline XML editor

	Input:
	Load the test case file using the open feature
	√
	X

	Expected Output:
	The XML that loads into the editor conforms to the test case and visually distinguishes between tags and their values.
	Actual Output:
	

	Test Case ID:
	LP-2.02
	Requirement:
	Editor.Write

Editor.Read

Editor.Tags

	Description:
	User makes valid changes to the XML code and updates the graphical representation.

	Preparation:
	1. A valid test case is running in an instance of the application

	Test Procedure:
	1. Navigate to the inline XML editor
2. Add new elements to the XML code as per the logic in HP-7.01
3. Request to validate the additions to the XML code

4. Edit the XML code as per the logic in HP-7.03 through HP-7.06

5. Request to validate the changes to the XML code

6. Delete XML code as per the logic in HP-8.01 through HP-8.03

7. Request to validate the XML code with the deletions

	Input:
	Request to validate the additions to the XML code
	√
	X

	Expected Output:
	The graphical representation reflects the new additions with the appropriate artifacts; the new tags are colored
	Actual Output:
	

	Input:
	Request to validate the changes to the XML code
	√
	X

	Expected Output:
	The graphical representation reflects the respective changes without error.
	Actual Output:
	

	Input:
	Request to validate the XML code with the deletions
	√
	X

	Expected Output:
	The appropriate artifacts are no longer displayed in the graphical representation.
	Actual Output:
	

	Test Case ID:
	LP-2.03
	Requirement:
	Editor.Read.Fail

	Description:
	User makes invalid changes to the XML code and attempts to update the graphical representation.

	Preparation:
	1. A valid test case is running in an instance of the application

	Test Procedure:
	1. Navigate to the inline XML editor
2. Add new elements to the XML code as per the logic in HP-7.02

3. Request to validate the additions to the XML code

	Input:
	Request to validate the additions to the XML code
	√
	X

	Expected Output:
	The system does not find the state XML to be valid and reports this error to the user.
	Actual Output:
	

	Test Case ID:
	LP-2.04
	Requirement:
	Editor.Read.Auto

Editor.Read.Auto.Set

	Description:
	User turns off the automatic validation feature of the inline editor.

	Preparation:
	1. A valid test case file exists on disk
2. An invalid test case file exists on disk

	Test Procedure:
	1. Open the valid test case file within Webster Visualize
2. Navigate to the application settings

3. Turn off the inline XML editor’s automatic validation feature

4. Make a change to the XML code that invalidates the test case

5. Wait 6 seconds

6. Open the invalid test case file within Webster Visualize

7. Navigate to the application settings

8. Turn on the inline XML editor’s automatic validation feature

9. Change the XML code so that the test case becomes valid

10. Wait 6 seconds

	Input:
	Make a change to the XML code that invalidates the test case
	√
	X

	Expected Output:
	After 5 seconds, there is no indication from the system reporting the XML to be invalid.
	Actual Output:
	

	Input:
	Change the XML code that the test case becomes valid
	√
	X

	Expected Output:
	After 5 seconds, the system indicates that the test case is valid and the graphical representation can be viewed.
	Actual Output:
	

	Test Case ID:
	LP-2.05
	Requirement:
	Editor.Auto

Editor.Auto.Config

	Description:
	User adjusts the period of time between automatic validations.

	Preparation:
	1. A valid test case is running in an instance of the application

	Test Procedure:
	1. Navigate to the application settings
2. Set the automatic validation interval to a desired time

3. Navigate to the inline XML editor

4. Make a change to the XML code that invalidates the test case

5. Wait for the duration of the new automatic validation interval

	Input:
	Make a change to the XML code that invalidates the test case
	√
	X

	Expected Output:
	After the set interval passes, the system indicates the test case is invalid without interrupting user activity
	Actual Output:
	

6.3.3 Custom Visuals

	Test Case ID:
	LP-3.01
	Requirement:
	Customize.Colors

Customize.Fonts

Customize.Zoom

	Description:
	User creates custom settings for the visual colors, fonts, and sizes.

	Preparation:
	1. A valid test case with one of each element artifact is running in an instance of Webster Visualize

	Test Procedure:
	1. Navigate to the application settings
2. Select new colors to be used with the different artifacts
3. Select a new font to be used for the artifact text

4. Select a new zoom level for viewing the artifacts
5. Confirm the new settings

	Input:
	Confirm the new settings
	√
	X

	Expected Output:
	The visual representation refreshes with the new colors, font, and zoom level.
	Actual Output:
	

	Test Case ID:
	LP-3.02
	Requirement:
	Customize.Profile

	Description:
	User restarts the Windows session after indicating custom settings.

	Preparation:
	1. User is logged on to an individual profile in Windows

2. User has preselected custom visuals as in LP-3.01
3. A valid test case with one of each element artifact exists on disk

	Test Procedure:
	1. Close the Webster Visualize application
2. Log out of Windows

3. Log back in to the same account

4. Open the Webster Visualize application

5. Open the test case file within the application

	Input:
	Open the test case file within the application
	√
	X

	Expected Output:
	The visuals render with the preselected colors, font, and zoom level
	Actual Output:
	

6.3.4 Open, Save, & Edit Test Suite Descriptions

	Test Case ID:
	LP-4.01
	Requirement:
	Suite.Create

	Description:
	User creates a new test suite description file.

	Preparation:
	1. An instance of Webster Visualize is running

	Test Procedure:
	1. Request to create a new test suite within the application
2. Examine the XML code either in the inline XML editor or by saving the file to disk and examining the file contents

	Input:
	Request to create a new test suite within the application
	√
	X

	Expected Output:
	The system opens the test suite editor with default values filled in according to the test suite file schema.
	Actual Output:
	

	Test Case ID:
	LP-4.02
	Requirement:
	Suite.Open

Suite.Open.Validate

	Description:
	User opens a valid test suite description file.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance

3. A valid test suite description file exists on disk

	Test Procedure:
	1. Request to open a new test suite within the application

2. Select a test suite description containing valid file references

	Input:
	Select a valid file and tell the system to open it.
	√
	X

	Expected Output:
	The system opens the specified file, displaying the test suite editor without any errors.
	Actual Output:
	

	Test Case ID:
	LP-4.03
	Requirement:
	Suite.Open

Suite.Open.Validate

	Description:
	User opens an invalid test suite descripton file.

	Preparation:
	1. An instance of Webster Visualize is running

2. No test files are open within the instance

3. An invalid test suite description file exists on disk

	Test Procedure:
	1. Request to open a new test suite within the application

2. Select a test suite description containing broken file references

	Input:
	Select an invalid file and tell the system to open it.
	√
	X

	Expected Output:
	The system reports the validation failure and informs the user of the file references that are no longer valid.
	Actual Output:
	

	Test Case ID:
	LP-4.03
	Requirement:
	Suite.Edit

Suite.Edit.Group

Suite.Edit.Validate

	Description:
	User adds a group of file references to a test suite and then deletes a file reference from the list.

	Preparation:
	1. A valid test suite is running in an instance of the application

2. Multiple test case files exist on disk in a single directory

	Test Procedure:
	1. Request to add test files to the test suite

2. Select the directory containing the multiple test case files

3. Save the test suite to a file to be compared against the original
4. Select a file reference and request to remove it from the test suite

5. Save the test suite to a file to be compared against the original

	Input:
	Confirm the addition request
	√
	X

	Expected Output:
	The system only adds test case files that exist in the selected directory to the test suite; the XML in the saved file updates accordingly.
	Actual Output:
	

	Input:
	Select a file reference and request to remove it from the test suite
	√
	X

	Expected Output:
	The single file reference is removed from the test suite and the XML in the saved file is updated.
	Actual Output:
	

7. Non-Functional Test Cases

7.1 Performance

	Test Case ID:
	NF-1.01
	Requirement:
	PE-1

	Description:
	User loads an XML test case and generates a graphical representation in a certain amount of time.

	Preparation:
	1. A stopwatch is available and has been reset

2. Restart the machine that Webster Visualize is installed on

3. Log on to your windows account

	Test Procedure:
	1. Navigate to the directory where a complex test case is stored

2. Double-click the test case to open it in Webster Visualize

3. Immediately start your stopwatch after you double-click on the test case

4. Stop the stopwatch when the graphical representation of the test case appears on your screen

5. Record the actual time to render the test case in the actual output box below

	Input:
	Load a test case from an XML file
	√
	X

	Expected Output:
	Graphical representation appears in under 10 seconds
	Actual Output:
	

	Test Case ID:
	NF-1.02
	Requirement:
	PE-1

	Description:
	User modifies an XML test case in the inline editor and generates a graphical representation in a certain amount of time.

	Preparation:
	1. A stopwatch is available and has been reset

2. A test case is open in an instance of Webster Visualize. The test case has at least one transaction group and one validation point.

	Test Procedure:
	1. Navigate to the inline editor tab

2. Manually create a new validation point inside a transaction group

3. Click on any of the sequencing tabs depicting the graphical representation. Immediately start the stopwatch once the click was made.

4. Stop the stopwatch once the full graphical representation of the test case appears.

5. Record the actual time and the tab navigated to in the actual output box below

	Input:
	Modify a test case in the inline editor
	√
	X

	Expected Output:
	Graphical representation appears in under 10 seconds
	Actual Output:
	

	Test Case ID:
	NF-1.03
	Requirement:
	PE-2

	Description:
	Stress test the system, ensuring that it does not hang for a period longer than 2 seconds.

	Preparation:
	1. A test case is open in an instance of Webster Visualize. The test case has at least one transaction group and one validation point.

2. No other applications are running on the user’s desktop

	Test Procedure:
	1. Navigate to any tab that permits modifications
2. Modify the test case in a manner that the tab permits the user to do. Ensure that the modification does not cause the test case to be invalid.

3. Navigate to any other tab that permits modifications
4. Repeat steps 2 and 3 for a period of 5 minutes. If at any point the application seems unresponsive, record a general trace of actions leading up to the unresponsive system.

	Input:
	Stress test Webster Visualize, attempting to hang the application
	√
	X

	Expected Output:
	Application never stalls for a period longer than 2 seconds
	Actual Output:
	

7.2 Modifiability

	Test Case ID:
	NF-3.01
	Requirement:
	N/A

	Description:
	Ensure that source code files come with adequate documentation and comments

	Preparation:
	1. Source code for the application is available and in a form that Visual Scrumware believes is ready for the customer

	Test Procedure:
	1. Open up a single source code file in a text editor.

2. Ensure that the source code file has a proper file header.

3. Ensure that the source file has comments for any defined classes Note any specific areas that lack documentation.

4. Ensure that the source file has comments for any methods. Note any specific methods that do not have documentation.

5. Parse the file for complex code sections, noting any place where code may be too complex to decipher at a glance.

6. Repeat steps 1 through 5 with a new source file.

	Input:
	Visual inspection of source code files
	√
	X

	Expected Output:
	Source code has standard headers on top. Classes, methods and internals have some comments.
	Actual Output:
	

7.3 Reliability

	Test Case ID:
	NF-3.01
	Requirement:
	SQA Reliability-1

	Description:
	Ensure that Webster Visualize generates consistent XML across various test cases

	Preparation:
	1. Create a copy of an existing test case into a temporary directory

2. Familiarize yourself with the WTF schema

	Test Procedure:
	1. Start a new test case using Webster Visualize

2. Create a new transaction group using the graphical editor, with at least one parameter group and one validation point. Do not use the inline editor.
3. Save the test case as a unique file in a temporary directory. Do not view the XML contents.

4. Open up the copy of an existing test case made during prep. Add the exact same transaction group constructed using the blank file in step 2, but do not place it anywhere in the sequence (if there is a sequence defined). Do not use copy/paste, and do not use the inline editor.
5. Save the test case, overwriting the file copied during preparation. Do not view the XML contents.
6. Start a third test case using Webster Visualize.

7. Manually construct what you think the XML representation of the test case should be using the inline editor. Do not use the graphical editor.

8. Open up the other two saved files in alternate instances of Webster Visualize. Navigate to the graphical representations of both.

9. Navigate to the graphical representation of the test case constructed using the inline XML editor

10. Visually compare the three files, noting any major differences between graphical representations in the box below.

11. Navigate to the inline xml editors on all three test cases.

12. Visually inspect each xml file, noting any major differences between the files with respect to the single transaction group

	Input:
	Construct the same transaction group 3 different ways
	√
	X

	Expected Output:
	Transaction group is functionally identical in all three test cases. Generated XML is human readable and modifiable.
	Actual Output:
	

	Test Case ID:
	NF-3.02
	Requirement:
	SQA Reliability-2

	Description:
	Ensure that an unhandled exception allows the user to save their test case

	Preparation:
	1. The application is modified to throw an unhandled exception when the user clicks on a toolbar button.

	Test Procedure:
	1. Open an existing test case in a new instance of the debug Webster Visualize

2. Make a legal modification to the test case using the graphical editor.

3. Click the toolbar button inserted to aid in debugging. This will throw an exception that will go unhandled.

4. When asked if you would like to save the file, click yes.

5. After the application exits, re-open the file just saved. Visually inspect the graphical representation to ensure that your changes were saved.

	Input:
	Force an unhandled exception from user code
	√
	X

	Expected Output:
	Application notifies the user that it is closing, and offers the user a chance to save the file
	Actual Output:
	

	Test Case ID:
	NF-3.03
	Requirement:
	SQA Reliability-2

	Description:
	Ensure that after a power failure the system allows the user to recover their file from the last auto-save

	Preparation:
	1. Ensure that Webster Visualize is the only application running on the computer
2. Turn the auto-save feature on, with an interval of 1 minute

	Test Procedure:
	1. Open an existing test case in Webster Visualize

2. Make a modification to the test case using any portion of the editor. Record which portion of the editor was used to make the modification in the actual output box below.

3. Wait at least 1 minute 30 seconds.

4. Disconnect power from the PC. If this is a virtual machine environment, simulate an abrupt power down.

5. Start the PC or virtual PC back up.

6. Once logged in, double-click on the test case that you were modifying. Ensure that the auto-save recovery dialog appears.

	Input:
	Test case is modified, and power is cut to the PC after an auto-save duration
	√
	X

	Expected Output:
	Application successfully finds the auto-save file and asks the user if they would like to recover.
	Actual Output:
	

7.4 Usability

Usability is to be measured through the use of user surveys, the specifics of which are dependent upon an agreement between the client and development team. Particularly, the surveys will focus on requesting a sampling of target users from Webster Financial to perform the major tasks of creating and editing a test case. The selection of target users to perform the tests will be left up to the client. Surveys will be constructed to measure ease of use for each of the following system features and their respective subtasks:

6.1.2
Create New Test Case

6.1.3
Open Test Case

 - Open an invalid test case

 - Open an unreadable test case

6.1.4
Close Test File

 - Close an unchanged test case

 - Close and save a modified test case

 - Close and don’t save a modified test case

6.1.7
Edit Graphical Representation

 - Build a new test case
 - Change the values within a test case

 - Edit the sequence of a test case

6.1.8
Delete Graphical Representation

 - Delete items within a test case

 - Delete full transaction groups

 - Delete from the test case sequence

6.1.9
Save Test Case
6.2.1
Comment Graphical Representation

 - Add comments to the test case

 - Edit the contents of a comment

 - Delete a comment

6.3.4
Open, Save, & Edit Test Suite Descriptions

 - Create a new test suite

 - Add test cases to a test suite

 - Delete test cases from a test suite

 - Save a test suite

In addition to gathering use case metrics for the above features, the surveys will also focus on soliciting user feedback regarding the shapes and colors chosen for the graphical representations. This focus may also make use of the Custom Visuals system features within the product. In the end, this user feedback will be used by the client and developers when judging the system’s adherence to the usability requirements as stated in the SRS.
8. Glossary

	artifact
	:
	Any generic graphical item used within the overall graphical representation of the test case such as arrows, sequencing graphical items, or comments.

	Canvas
	:
	The working area of a test case graphical representation.

	element artifacts
	:
	An artifact that graphically represents transaction group, imported test case, test data entry, transaction, validation, validation point, and parameter artifact elements within the XML test case description.

	ending point
	:
	Two concentric circles, the inner circle being solid and the outer circle being hollow, positioned at the bottom of a sequence.

	starting point
	:
	A solid circle positioned at the top of a sequence.

	state XML
	:
	XML code that is loaded into the system either through reading an XML file, interpreting a visual representation, or reading from the XML editor.

	static message
	:
	A system prompt that contains important information, which the user must acknowledge via singular affirmative input before the application may resume execution.

	test file
	:
	A test case or a test suite, able to be serialized as either XML or a proprietary file format.

	valid (test case, file)
	:
	A test case is considered valid if it conforms to the WTF XSD definition. A file is considered valid if it exists on the local hard disk.

	WTF XSD
	:
	Webster Testing Framework XML Schema Definition

	
	
	

� HP-9.01, HP-9.02, and HP-9.05 can be performed for test suites in addition to test cases. HP-9.03 and HP-9.04 may also be performed for test suites but with the XSD provided by the developers rather than the WTF XSD.

