
Engineering Secure Software

A Ubiquitous Concern

 You can make a security mistake at every step of the
development lifecycle

 Requirements that allow for privacy violations
e.g. secretary can view everyone’s patient records

 Introducing a design flaw, e.g. giving plug-ins total access

 Introducing a code-level vulnerability, e.g. buffer overflow

 Missing a vulnerability in code inspections & testing

 Introducing a vulnerability by regression in maintenance

 Not facilitating a secure deployment, e.g. installation defaults

© 2011-2012 Andrew Meneely

Security at Every Step

Requirements &
Planning

Abuse cases

Risk
Assessment

Threat
Modeling

Design

Architectural
risk

Secure
design

patterns

Formalism

Implementation

Vulnerability
Taxonomy

Input/Output
Handling

Auditability

Testing

Penetration
Testing

Exploratory
Testing

Automated
Testing

Deployment

Networking &
Cryptography

Defaults

Permissions

Maintenance

Patching

Regression

Assessment

Core Security Properties

 Software security breaks into these
categories
 Confidentiality

 Integrity

 Availability

 Very broad, multi-dimensional categories

 Some people add in “auditability”, but we
consider that part of “integrity”

Confidentiality

 The system must not disclose any

information intended to be hidden

E.g. your credit card information on a website

 Note: open source software can still be

confidential

Integrity

 The system must not allow assets to be

subverted by unauthorized users

E.g. changing a prisoner’s release date

 We must be able trust what is in the

system

 The data being stored

 The functionality being executed

Availability

 The system must be able to be available
and operational to users
E.g. bringing down Amazon.com

 These are extremely hard to protect
against
 Any system performance degradation that can

be triggered by a user can be used for denial of
service attacks

 Concurrency issues, infinite loop, or resource
exhaustion

Misc. Philosophies & Proverbs

 Defense in depth

 If they break into this, they can’t get any farther

 Think Middle-Age castles

 Original meaning of “firewall”, not today’s firewall

 Least privilege

 Every user or module is given the least amount

of privilege it needs

 Evil: sudo chmod –R a+rw /

More Misc. Philosophies &

Proverbs

 Fail securely
 Exceptions put the system into weird states

 Error message information leak

 Take care of those exceptions properly!

 Security by obscurity
 You can’t rely upon being obscure to be secure

○ Crowds are good at guessing

○ Insiders are corruptible

 Some notable exceptions: passwords,
encryption keys

Even More Misc. Philosophies &

Proverbs

 Detect and record

 Even if you can’t always sift through that data

ahead of time

 Post-mortem analysis

 Don’t trust [input | environment | dependencies | *]

 Know what to trust

 Know how to trust

Even Even More Misc.

Philosophies & Proverbs

 Secure by default

 Don’t rely on your users to use it correctly

 Convention over configuration

 Keep it simple

 YAGNI

 Speculative generality can be risky

 Minimize the attack surface

