Engineering Secure Software

DEVELOPMENT
LIFECYCLE & PRINCIPLES

—4

A Ubiquitous Concern

You can make a security mistake at every step of the
development lifecycle

Requirements that allow for privacy violations
e.g. secretary can view everyone’s patient records

Introducing a design flaw, e.g. giving plug-ins total access

Introducing a code-level vulnerabillity, e.g. buffer overflow

Missing a vulnerability in code inspections & testing

Introducing a vulnerability by regression in maintenance

Not facilitating a secure deployment, e.g. installation defaults

Security at Every Step

Requirements &
Planning

Design Implementation Testing Deployment Maintenance

Abuse cases

Risk
Assessment

Threat
Modeling

Architectural Vulnerability Penetration Networking &

risk Taxonomy Testing Cryptography Patching

Secure
design
patterns

Input/Output Exploratory

Handling Testing Defaults

Regression

Automated

Testing Assessment

Permissions

Formalism Auditability

Core Security Properties

Software security breaks into these
categories

Confidentiality

Integrity

Avallability

Very broad, multi-dimensional categories

Some people add in “auditability”, but we
consider that part of “integrity”

Confidentiality

The system must not disclose any
information intended to be hidden

E.g. your credit card information on a website

Note: open source software can still be
confidential

Integrity

The system must not allow assets to be
subverted by unauthorized users

E.g. changing a prisoner’s release date

We must be able trust what is in the
system

The data being stored

The functionality being executed

Avalilability

The system must be able to be available
and operational to users

E.g. bringing down Amazon.com

These are extremely hard to protect
against
Any system performance degradation that can

be triggered by a user can be used for denial of
service attacks

Concurrency issues, infinite loop, or resource
exhaustion

Misc. Philosophies & Proverbs

Defense in depth
If they break into this, they can’t get any farther
Think Middle-Age castles
Original meaning of “firewall”, not today’s firewall

Least privilege
Every user or module is given the least amount
of privilege it needs
Evil: sudo chmod -R a+rw /

More Misc. Philosophies &
Proverbs

Fail securely
Exceptions put the system into weird states
Error message information leak
Take care of those exceptions properly!

Security by obscurity

You can'’t rely upon being obscure to be secure
o Crowds are good at guessing
o |Insiders are corruptible

Some notable exceptions: passwords,
encryption keys

Even More Misc. Philosophies &
Proverbs

Detect and record

Even if you can’t always sift through that data
ahead of time

Post-mortem analysis

Don’t trust [input | environment | dependencies | *]
Know what to trust
Know how to trust

Even Even More Misc.
Philosophies & Proverbs

Secure by default
Don't rely on your users to use it correctly
Convention over configuration

Keep it simple
YAGNI
Speculative generality can be risky
Minimize the attack surface

