
Engineering Secure Software

A Ubiquitous Concern

 You can make a security mistake at every step of the
development lifecycle

 Requirements that allow for privacy violations
e.g. secretary can view everyone’s patient records

 Introducing a design flaw, e.g. giving plug-ins total access

 Introducing a code-level vulnerability, e.g. buffer overflow

 Missing a vulnerability in code inspections & testing

 Introducing a vulnerability by regression in maintenance

 Not facilitating a secure deployment, e.g. installation defaults

© 2011-2012 Andrew Meneely

Security at Every Step

Requirements &
Planning

Abuse cases

Risk
Assessment

Threat
Modeling

Design

Architectural
risk

Secure
design

patterns

Formalism

Implementation

Vulnerability
Taxonomy

Input/Output
Handling

Auditability

Testing

Penetration
Testing

Exploratory
Testing

Automated
Testing

Deployment

Networking &
Cryptography

Defaults

Permissions

Maintenance

Patching

Regression

Assessment

Core Security Properties

 Software security breaks into these
categories
 Confidentiality

 Integrity

 Availability

 Very broad, multi-dimensional categories

 Some people add in “auditability”, but we
consider that part of “integrity”

Confidentiality

 The system must not disclose any

information intended to be hidden

E.g. your credit card information on a website

 Note: open source software can still be

confidential

Integrity

 The system must not allow assets to be

subverted by unauthorized users

E.g. changing a prisoner’s release date

 We must be able trust what is in the

system

 The data being stored

 The functionality being executed

Availability

 The system must be able to be available
and operational to users
E.g. bringing down Amazon.com

 These are extremely hard to protect
against
 Any system performance degradation that can

be triggered by a user can be used for denial of
service attacks

 Concurrency issues, infinite loop, or resource
exhaustion

Misc. Philosophies & Proverbs

 Defense in depth

 If they break into this, they can’t get any farther

 Think Middle-Age castles

 Original meaning of “firewall”, not today’s firewall

 Least privilege

 Every user or module is given the least amount

of privilege it needs

 Evil: sudo chmod –R a+rw /

More Misc. Philosophies &

Proverbs

 Fail securely
 Exceptions put the system into weird states

 Error message information leak

 Take care of those exceptions properly!

 Security by obscurity
 You can’t rely upon being obscure to be secure

○ Crowds are good at guessing

○ Insiders are corruptible

 Some notable exceptions: passwords,
encryption keys

Even More Misc. Philosophies &

Proverbs

 Detect and record

 Even if you can’t always sift through that data

ahead of time

 Post-mortem analysis

 Don’t trust [input | environment | dependencies | *]

 Know what to trust

 Know how to trust

Even Even More Misc.

Philosophies & Proverbs

 Secure by default

 Don’t rely on your users to use it correctly

 Convention over configuration

 Keep it simple

 YAGNI

 Speculative generality can be risky

 Minimize the attack surface

