Engineering Secure Software

SECURITY RISK ASSESSMENT

Why do we study risk?

Many outcomes are possible, not all are probable

• Enumeration

Prioritization

• Discussion

Naïve Security Risk Assessment

- The naïve approach
 - Write down your worst fears for the system
 - Try to avoid those things
- Cons
 - Requires a big "bag of tricks"
 - Easily overwhelming for security

What is risk?

- p(occurrence)*impact
- The risk associated with an event is the probability that the event will happen times the impact magnitude of the event
- For the math-oriented... expected value
- Matches how people generally think
 - Low p(occ), high impact
 ... terrorist attacks, struck by lightning
 - High p(occ), low impact
 ... credit card theft, keeping my old truck unlocked

What is security risk?

- p(exploit)*value of an asset
- p(exploit)
 The probability that an exploit will occur on your system
- Asset
 - A [tangible or intangible] resource of the system that has value in confidentiality, integrity, availability

p(exploit)

- Increased by more vulnerabilities
- Increased by a far-reaching vulnerability
- Increased by discoverable vulnerabilities
 ...although you cannot rely on security through obscurity alone ...
- Increased by scope of the project ...although sometimes that is unavoidable...
- Other factors that we cannot control
 - Market share → exposure
 - New malicious actors (e.g. activism spike)
 - Many, many other factors that we must ignore for the sake of simplicity
- Thus, we generally assume p(vulnerability) is proportional to p(exploit)

Assets

- An asset is data store or a component that the deployed system must protect
- Every software system has assets

Domain-specific

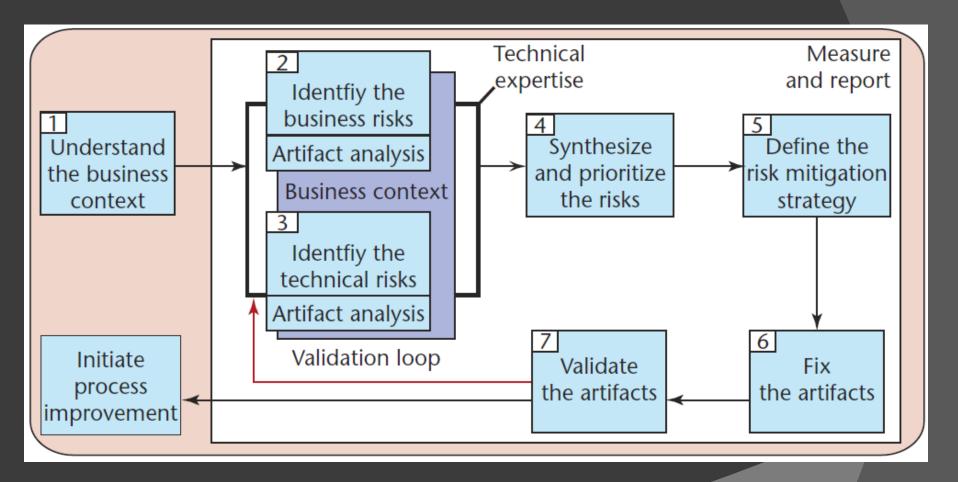
e.g. patient records

Domain-independent

e.g. passwords

Intangible properties

e.g. availability


- These can be identified at the requirements and design stages
- Assets exist in the deployed system, so source code is not (necessarily) an asset

Places where assets live

- Database tables
- Logs
- User-supplied data
 Sandboxing
- Configuration files
- Configuration consoles
- File systems
- Security feature inputs

- Sandboxing features
- Built-in examples
- Network traffic
- Cookies
- User interfaces

Risk Assessment in Process

From: http://www.cigital.com/papers/download/bsi3-risk.pdf

The Planning > The Plan

- One of the most important elements of risk analysis is the process itself
 - Discussions that are brought up
 - Fighting over the mitigation strategies
- Communication is very important at this stage
- Assessing the change in risk is more sound than the final numbers
 - New assets?
 - Increased p(exploit)?

<u>Abuse Cases vs. Risk Assessment</u>

- Abuse & Misuse Cases
 - Involves planning
 - Potentially infinite
 - Emphasize domain
 - Scenario-driven
 - Originates from abusing functionality
 - What if?

- Risk Assessment
 - Involves planning
 - Potentially infinite
 - Emphasize all risks
 - Quantitative
 - Originates from CIA, assets, p(exploit)
 - What might?

Protection Poker

- A combination of product & process risk
 - Trace stories to assets
 - Quantify the risk for prioritization
 - Ease of attack
 - Value of the asset
 - Discuss the elements of the risk
- Originally designed for agile processes
 - Assumes we are in a sprint
 - Not comprehensive, but just-in-time

Story Points Estimation

- In PP, we use story points
 - Dimensionless (unit-less)
 - Should not translate to hours, effort, etc.
- Limited to a few choices
 - Why argue over 51 vs. 50?
 - Exponential in scale (~Fibonacci)
- Ease of attack ~ p(vulnerability)

Protection Poker in Action

- Identify some assets
- Calibrate your asset values
- Calibrate your ease of attack
- For each item
 - Trace the item to the assets affected
 - Vote on affected asset values, as needed
 - Vote on ease of attack
- Examine two rankings
 - Ease*Max(value)
 - Ease*Sum(value)