Engineering Secure Software

SECURE DESIGN
PATTERNS



Key Security Design Principles

Today’s design patterns hit upon some
key principles

Distrust by default

Defense in depth

Least privilege



Distrustful Decomposition

Problem: many programs run with elevated permissions,
and need those permissions

Solution

Decompose the system into separate processes with separate
permissions (i.e. fork())

Communicate via pipes, domain sockets, or files
Each process distrusts the other

o e.g. validate the input from the other process

o e.g. re-check credentials and integrity mechanisms

Allows separation of privilege with the different processes
running at different permissions levels

Intent
Reduce impact of an exploit
Incorporate distrust at the architecture level






Secure Visitor

Problem: encapsulating an operation across
related objects (e.g. hierarchy), but we want
authorization

Solution
Visitor pattern, but with credentials

The visited objects get to choose their credential
level, not the visitor

Benefits
Authorization is done In visited, not the visitors
Some visited objects can choose to never be visited



e.g. CIAOrganization Interfaces

public interface IVisitable {
public <T> T accept(IVisitor<T> visitor, Clearance c);

}

public interface IVisitor<T> {
public <T> T visit(Director d);
public <T> T visit(Manager m);
public <T> T visit(Technician t);
public <T> T visit(Spy s);

}

//usage:
// director.accept(new AuditTravelVisitor(), clearance);




e.g. CIAOrganization Tree

public class Technician implements IVisitable {
public <T> T accept(IVisitor<T> visitor, Clearance c) {
return visitor.visit(this);// always visit

¥
}

public class Manager implements IVisitable {
public <T> T accept(IVisitor<T> visitor, Clearance c) {
if (c.hasClearance("Secret"))
return visitor.visit(this);
else
throw new SecurityException("Authorization required");

}

}
public class Spy implements IVisitable {

public <T> T accept(IVisitor<T> visitor, Clearance c) {
//never visit
throw new SecurityException("Not visitable!");

}



Input Validation Aspect

Problem: input validation is needed on beans
(i.e. just getters and setters)

Solution

Use aspect-oriented programming to provide input
validation on all setters

New method? Validation is already called

Intent

With unit testing, forces the developer to come up
with the input validation early on

Encapsulates input validation in one place, without
the rest of the system to remember to use._it



e.g. Sales

public aspect SalesInputValidator {

pointcut validate(String arg): execution]*
Sale.set*(String) && args(arg)

before (String arg): validate(arg){
if (!str.matches("[a-zA-Z]*"))
throw new IllegalArgumentException("Input
not valid");

sale.setProduct(“123“); //exception is thrown here




Secure Logger

Problem: sensitive logs are piped to stdout, or
other insecure means

Solution

Pipe logging statements via SSL to a separate
server

Provide more performance-intensive filters for a
more organized log

Benefits
Fast operation once the sockets are setup

Compromising the logger or server doesn’t
compromise both

Offline analysis is easier



