
Engineering Secure Software

Key Security Design Principles

 Today’s design patterns hit upon some

key principles

 Distrust by default

 Defense in depth

 Least privilege

© 2011-2012 Andrew Meneely

Distrustful Decomposition

 Problem: many programs run with elevated permissions,
and need those permissions

 Solution
 Decompose the system into separate processes with separate

permissions (i.e. fork())

 Communicate via pipes, domain sockets, or files

 Each process distrusts the other
○ e.g. validate the input from the other process

○ e.g. re-check credentials and integrity mechanisms

 Allows separation of privilege with the different processes
running at different permissions levels

 Intent
 Reduce impact of an exploit

 Incorporate distrust at the architecture level

e.g. QMail
Remote mail

server

Root-level operations
• Socket listening & sending

• Process management

User-level operations
• Queue management

• CLI processing

• Error handling

• Configuration

• Virtual domains

• Delivery to client

• etc.

Trust boundary

Secure Visitor

 Problem: encapsulating an operation across
related objects (e.g. hierarchy), but we want
authorization

 Solution
 Visitor pattern, but with credentials

 The visited objects get to choose their credential
level, not the visitor

 Benefits
 Authorization is done in visited, not the visitors

 Some visited objects can choose to never be visited

e.g. CIAOrganization Interfaces

public interface IVisitable {

 public <T> T accept(IVisitor<T> visitor, Clearance c);

}

public interface IVisitor<T> {

 public <T> T visit(Director d);

 public <T> T visit(Manager m);

 public <T> T visit(Technician t);

 public <T> T visit(Spy s);

}

//usage:

// director.accept(new AuditTravelVisitor(), clearance);

e.g. CIAOrganization Tree
public class Technician implements IVisitable {
 public <T> T accept(IVisitor<T> visitor, Clearance c) {
 return visitor.visit(this);// always visit
 }
}
public class Manager implements IVisitable {
 public <T> T accept(IVisitor<T> visitor, Clearance c) {
 if (c.hasClearance("Secret"))
 return visitor.visit(this);
 else
 throw new SecurityException("Authorization required");
 }
}
public class Spy implements IVisitable {
 public <T> T accept(IVisitor<T> visitor, Clearance c) {
 //never visit
 throw new SecurityException("Not visitable!");
 }
}

Input Validation Aspect

 Problem: input validation is needed on beans
(i.e. just getters and setters)

 Solution
 Use aspect-oriented programming to provide input

validation on all setters

 New method? Validation is already called

 Intent
 With unit testing, forces the developer to come up

with the input validation early on

 Encapsulates input validation in one place, without
the rest of the system to remember to use it

e.g. Sales
public aspect SalesInputValidator {

 pointcut validate(String arg): execution|*

Sale.set*(String) && args(arg)

 before (String arg): validate(arg){
 if (!str.matches("[a-zA-Z]*"))
 throw new IllegalArgumentException("Input

 not valid");
 }
}

 sale.setProduct(“123“); //exception is thrown here

Secure Logger

 Problem: sensitive logs are piped to stdout, or
other insecure means

 Solution
 Pipe logging statements via SSL to a separate

server

 Provide more performance-intensive filters for a
more organized log

 Benefits
 Fast operation once the sockets are setup

 Compromising the logger or server doesn’t
compromise both

 Offline analysis is easier

