
Engineering Secure Software

Key Security Design Principles

 Today’s design patterns hit upon some

key principles

 Distrust by default

 Defense in depth

 Least privilege

© 2011-2012 Andrew Meneely

Distrustful Decomposition

 Problem: many programs run with elevated permissions,
and need those permissions

 Solution
 Decompose the system into separate processes with separate

permissions (i.e. fork())

 Communicate via pipes, domain sockets, or files

 Each process distrusts the other
○ e.g. validate the input from the other process

○ e.g. re-check credentials and integrity mechanisms

 Allows separation of privilege with the different processes
running at different permissions levels

 Intent
 Reduce impact of an exploit

 Incorporate distrust at the architecture level

e.g. QMail
Remote mail

server

Root-level operations
• Socket listening & sending

• Process management

User-level operations
• Queue management

• CLI processing

• Error handling

• Configuration

• Virtual domains

• Delivery to client

• etc.

Trust boundary

Secure Visitor

 Problem: encapsulating an operation across
related objects (e.g. hierarchy), but we want
authorization

 Solution
 Visitor pattern, but with credentials

 The visited objects get to choose their credential
level, not the visitor

 Benefits
 Authorization is done in visited, not the visitors

 Some visited objects can choose to never be visited

e.g. CIAOrganization Interfaces

public interface IVisitable {

 public <T> T accept(IVisitor<T> visitor, Clearance c);

}

public interface IVisitor<T> {

 public <T> T visit(Director d);

 public <T> T visit(Manager m);

 public <T> T visit(Technician t);

 public <T> T visit(Spy s);

}

//usage:

// director.accept(new AuditTravelVisitor(), clearance);

e.g. CIAOrganization Tree
public class Technician implements IVisitable {
 public <T> T accept(IVisitor<T> visitor, Clearance c) {
 return visitor.visit(this);// always visit
 }
}
public class Manager implements IVisitable {
 public <T> T accept(IVisitor<T> visitor, Clearance c) {
 if (c.hasClearance("Secret"))
 return visitor.visit(this);
 else
 throw new SecurityException("Authorization required");
 }
}
public class Spy implements IVisitable {
 public <T> T accept(IVisitor<T> visitor, Clearance c) {
 //never visit
 throw new SecurityException("Not visitable!");
 }
}

Input Validation Aspect

 Problem: input validation is needed on beans
(i.e. just getters and setters)

 Solution
 Use aspect-oriented programming to provide input

validation on all setters

 New method? Validation is already called

 Intent
 With unit testing, forces the developer to come up

with the input validation early on

 Encapsulates input validation in one place, without
the rest of the system to remember to use it

e.g. Sales
public aspect SalesInputValidator {

 pointcut validate(String arg): execution|*

Sale.set*(String) && args(arg)

 before (String arg): validate(arg){
 if (!str.matches("[a-zA-Z]*"))
 throw new IllegalArgumentException("Input

 not valid");
 }
}

 sale.setProduct(“123“); //exception is thrown here

Secure Logger

 Problem: sensitive logs are piped to stdout, or
other insecure means

 Solution
 Pipe logging statements via SSL to a separate

server

 Provide more performance-intensive filters for a
more organized log

 Benefits
 Fast operation once the sockets are setup

 Compromising the logger or server doesn’t
compromise both

 Offline analysis is easier

