
Engineering Secure Software

Risk Management

 Beyond assessment
 Assess: Enumerate, Prioritize, Discuss

 Manage: Act on those discussions

 Mitigate risk
 Every risk has a mitigation

 Plan, plan, plan

 Know the limitations of your solution

 Track risk
 Effective mitigations?

 Increased p(exploit)?

 Increased asset value?

© 2011-2012 Andrew Meneely

Top-Down Test Planning

 Start with the broad analysis of the domain
 Goals

 Assets

 Top-down analysis (“forest-level”)

 Goals Risks Indicators Tests

 Vulnerability-focused
 Instead of exploit-focused

 Too much functionality

 Move on when the vulnerability is found

 Valued assets are given a priority

Goals Risks

 Goals
 Overall objectives of the system

○ Business-focused objectives revenue streams

○ User-focused objectives branding

 Constraints on the development
 e.g. release dates

 Availability concerns

 A product has a finite number of goals

 High-Level Risks
 Directly map to 1+ objectives

 Influenced by both p(vuln) & assets

 A product has a finite number of high-level risks

Risks Indicators

 How will we know that a high-level risk
became a problem?
 A measurable outcome of the system

 What is the poor behavior of the system?

 What are the potential underlying causes?

 E.g. downtime, asset exposure

 Indicators are potentially infinite
 …but three will get you very far

Indicators Tests

 Given an indicator, how do we ensure
that the indicator is avoided or satisfied?

 Test for it!

 Key: specific expectations

 Tests are even more infinite

 Might require more design &
architecture work to execute this step

e.g. BlogReader Goals

 Goals:
 (user) Provide pretty-looking formatting of user’s blogs

 (business) Make money via advertisements

 Constraints: web-based configuration, mobile app, 6-
month release cycles

 Availability: 99.9% uptime
(8.76 hours downtime/year)

 Assets
 User subscription information (e.g. blog feeds)

 Personal data (e.g. emails)

 Social graph

e.g. BlogReader Risks .. Tests

 High-Level Risk: social graph disclosure
 Indicator: APIs allow unauthorized access to social

graph

 Test: direct access to user friends should be denied

 Test: votes logged are anonymized or digested

 High-Level Risk: availability is compromised
 User-focused: users are unable to reach their feeds

 Business-focused: customers move to a different tool

 Indicators: high processor loads, full hard drives,
downtime

 Tests: stress tests for networking, disk activity, and
crashes

When do I do what?

 At the requirements phase:
 Goals

 Risks

 At a high-level design phase (i.e. architecture)

 Indicators

 Some tests

 At a low-level design phase (incl. maintenance)

 More Tests

 All the time
 Track

 “Bubble up” new risks from new test ideas

Bottom-Up Security Test Planning

 Step 1: Write down a lot of tests
 Document it in short form

 Doesn’t have to be complete – just seeds for now

 Step 2: Group those tests into various categories
 By assets

 By functionality

 By CIA consequences

 By what your team requires to run the test

 etc.

 Step 3: Revise the categories as a group
 Missing groups?

 Missing tests in a group?

 Step 4: Add more tests to each category

Benefits and Drawbacks

 Top-down security test planning
 Benefit: tied to specific goals

 Drawback: incomplete within the categories
○ “Just to check it off the list” syndrome

○ Miss out on planning for really creative tests

 Bottom-up security test planning
 Benefit: gives you freedom to write your best tests

immediately

 Drawbacks: easy to miss stuff
○ Entire goals/categories/assets can get missed

○ Without proper grouping it disintegrates into your “bag
of tricks”

○ Requires security expertise in the first place

12-Minute Test Plans

 Bottom-up test planning activity for today

 Make a GoogleDoc called “Test Planning”
 Everyone at your table will be editing this doc

simultaneously
○ So give everyone access

○ Make some whitespace

 Instructor will give you a well-known software system
 5 minutes: individually, everyone write down as many

security tests as you can think of

 7 minutes: as a team, edit them together, categorize them

 We will do several of these, as time allows

