
Engineering Secure Software

Risk Management

 Beyond assessment
 Assess: Enumerate, Prioritize, Discuss

 Manage: Act on those discussions

 Mitigate risk
 Every risk has a mitigation

 Plan, plan, plan

 Know the limitations of your solution

 Track risk
 Effective mitigations?

 Increased p(exploit)?

 Increased asset value?

© 2011-2012 Andrew Meneely

Top-Down Test Planning

 Start with the broad analysis of the domain
 Goals

 Assets

 Top-down analysis (“forest-level”)

 Goals  Risks  Indicators  Tests

 Vulnerability-focused
 Instead of exploit-focused

 Too much functionality

 Move on when the vulnerability is found

 Valued assets are given a priority

Goals  Risks

 Goals
 Overall objectives of the system

○ Business-focused objectives  revenue streams

○ User-focused objectives  branding

 Constraints on the development
 e.g. release dates

 Availability concerns

 A product has a finite number of goals

 High-Level Risks
 Directly map to 1+ objectives

 Influenced by both p(vuln) & assets

 A product has a finite number of high-level risks

Risks  Indicators

 How will we know that a high-level risk
became a problem?
 A measurable outcome of the system

 What is the poor behavior of the system?

 What are the potential underlying causes?

 E.g. downtime, asset exposure

 Indicators are potentially infinite
 …but three will get you very far

Indicators  Tests

 Given an indicator, how do we ensure
that the indicator is avoided or satisfied?

 Test for it!

 Key: specific expectations

 Tests are even more infinite

 Might require more design &
architecture work to execute this step

e.g. BlogReader Goals

 Goals:
 (user) Provide pretty-looking formatting of user’s blogs

 (business) Make money via advertisements

 Constraints: web-based configuration, mobile app, 6-
month release cycles

 Availability: 99.9% uptime
(8.76 hours downtime/year)

 Assets
 User subscription information (e.g. blog feeds)

 Personal data (e.g. emails)

 Social graph

e.g. BlogReader Risks ..  Tests

 High-Level Risk: social graph disclosure
 Indicator: APIs allow unauthorized access to social

graph

 Test: direct access to user friends should be denied

 Test: votes logged are anonymized or digested

 High-Level Risk: availability is compromised
 User-focused: users are unable to reach their feeds

 Business-focused: customers move to a different tool

 Indicators: high processor loads, full hard drives,
downtime

 Tests: stress tests for networking, disk activity, and
crashes

When do I do what?

 At the requirements phase:
 Goals

 Risks

 At a high-level design phase (i.e. architecture)

 Indicators

 Some tests

 At a low-level design phase (incl. maintenance)

 More Tests

 All the time
 Track

 “Bubble up” new risks from new test ideas

Bottom-Up Security Test Planning

 Step 1: Write down a lot of tests
 Document it in short form

 Doesn’t have to be complete – just seeds for now

 Step 2: Group those tests into various categories
 By assets

 By functionality

 By CIA consequences

 By what your team requires to run the test

 etc.

 Step 3: Revise the categories as a group
 Missing groups?

 Missing tests in a group?

 Step 4: Add more tests to each category

Benefits and Drawbacks

 Top-down security test planning
 Benefit: tied to specific goals

 Drawback: incomplete within the categories
○ “Just to check it off the list” syndrome

○ Miss out on planning for really creative tests

 Bottom-up security test planning
 Benefit: gives you freedom to write your best tests

immediately

 Drawbacks: easy to miss stuff
○ Entire goals/categories/assets can get missed

○ Without proper grouping it disintegrates into your “bag
of tricks”

○ Requires security expertise in the first place

12-Minute Test Plans

 Bottom-up test planning activity for today

 Make a GoogleDoc called “Test Planning”
 Everyone at your table will be editing this doc

simultaneously
○ So give everyone access

○ Make some whitespace

 Instructor will give you a well-known software system
 5 minutes: individually, everyone write down as many

security tests as you can think of

 7 minutes: as a team, edit them together, categorize them

 We will do several of these, as time allows

