
Engineering Secure Software

Uses of Risk Thus Far

 Start with the functionality
 Use cases  abuse/misuse cases

 p(exploit), p(vulnerability)

 Start with what to protect
 Goals  High-level Risks  Indicators  Tests

 Assets

 Domain, domain, domain

 Today: start with threats

© 2011-2012 Andrew Meneely

STRIDE

 Spoofing

 Tampering

 Repudiation

 Information disclosure

 Denial of Service

 Elevation of privilege

I am Spartacus.

Looks like Johnny got an A!

Didn’t Johnny have a B?

Johnny’s SSN is…

Please try again later.

sudo rm –rf /home/johnny

STRIDE ~> Security Properties

 Kind of the inverse of security properties, but not fully
 Tampering  Integrity violation

 Repudiation  Integrity of the history violation

 Information Disclosure  Confidentiality violation

 Denial of service  Availability violation

 Spoofing
 Violating authentication

 You are not who you say you are
 (e.g. session hijacking, guessing passwords)

 Elevation of privilege
 Violating authorization

 You can access things you should not be allowed to access
 (e.g. permissions, network access)

Repudiation

 A threat to the belief that integrity was preserved
 Didn’t Johnny have a B?

 Provenance
 Logs

 Hash (digest) algorithms

 Third-party verification

 e.g. artwork, copyright registration

 Ultimately, another type of integrity violation
 …but not exactly a tampering threat

 Protect against tampering? Filter access, etc.

 Protect against repudiation? Keep a reliable history

Architectural Risk Analysis

 Discuss security risk once most of the architecture is
settled

 Motivation: a few good early decisions goes a long way
 e.g. incorporating encryption

 e.g. authentication & access control concerns

 e.g. choice of technologies used

 Must-haves vs. Nice-to-haves at the design level

 Emphasis of design flaws over code-level vulnerabilities

 Note: “Risk Analysis” is not necessarily “Modeling”

Threat Modeling

 Architectural risk analysis tool
 Built at Microsoft, on top of Visio

 STRIDE concept

 Methodology:
 Define architecture elements

○ Processes

○ External interactors

○ Data store

 Connect with data flows

 Define trust & machine boundaries

 Map STRIDE to each element & relationship

Primitives

 External interactors
e.g. clients, other systems, dependencies

 Process
Architecture-centered functionality
e.g. dispatcher, input validator

 Data store
e.g. database, file system

 Data flow
Domain & Design-specific explanation of

data
e.g. “HTTP Login Requests”

Boundaries

 Machine boundaries

Same physical

machine

 Trust boundaries

If the input can be

trusted

e.g. Generic Webapp with MVC

 Note: example is typically more domain-specific

 e.g. How will we prevent spoofing of the browser?

 e.g. How will we prevent tampering of queries?

 e.g. How do we avoid persistent data from the DB being
disclosed?

 E.g. How will we avoid repudiation of the database?

Analysis
 What the tool does…

 Eliminates categories of threats

 Forces you describe mitigations

 Helps record assumptions

 Go directly to file a bug

 Threats arise when…

 Flows cross boundaries

 More processes

 Forgetting what to trust

Tips for Threat Modeling

 Be honest with the process
 Make sure the model represents reality (or what you really

believe reality will be)

 Consider all types of threats –
code-level vulns are just a “for example”

 As with all modeling, use appropriate complexity
 Overly-simplified?

○ Departs from reality

○ You get exactly what you put into it – no new knowledge

 Overly-complicated?
○ Too much to analyze

○ “Check it off the list” syndrome

 Test your model
Think of a specific security concern, then try to see where it fits in

your threat model

Today’s Activity

 Groups of 2-3

 Go through the Threat Modeling activity

 Tool: c:\Program Files (x86)\Microsoft\SDL

Threat Modeling\SDLTM.exe

 For attendance, find me to check you off

for today before leaving

