
Engineering Secure Software

Part 2

Last Time…

 Always code defensively

 Principles
 Writing insecure code is easy

 Maintainability still counts

 Know thy APIs

 Complexity is the enemy of security

 Don’t be paranoid

 Tree of Knowledge

 Validating Input

 Sanitizing Input

 Exception Handling

 Subclassing

 Immutability

 Concurrency

 Double-free

Concept: Attack Surface

 Most exploits enter in through the UI
 Often the same interface the users see

 Hence: input validation & sanitization

 Attack surface
 The number & nature of the inputs for a given system

 Can be quantified

 Usually compared

 Attack surface increases with…
 More inputs

 e.g. new input fields, new features

 Larger input space for a given input
 e.g. allowing a markup language instead of plaintext

Let your GET mean GET

 HTTP protocols have different actions
 GET – for retrieving data (typical usage)

 POST, DELETE, etc. – modify stuff

 HTTP protocol specifies that GET actions should never
have a persistent effect (e.g. model)

 Even though you can encode parameters into URLs

 Greatly helps mitigate cross-site request forgery (CSRF)

 Rarely respected

 This is okay:

 This is not:

Home Home

Change Name Change Name

Native Wrappers

 If you use another language, you inherit

all of the risks in that language

e.g. Java Native Interface (JNI) can execute a

C program with a buffer overflow

 Also: treat native calls as external

entities

 Perform input validation & sanitization

 Loaded at runtime  spoofing opportunity

Cloning is Insecure (and Medically Unethical!)

 Every Java object has a clone() method

 Often error-prone

 Doesn’t do what you think it does

 Most people don’t abide by the contract

 Even the Java architects don’t like it

 The Java Language Secure Coding Guidelines

from Oracle recommend not using

java.lang.Cloneable entirely.

 Use your own copy mechanism if needed

public static  final

 Global variables are evil

 Mutable global variables are an abomination

 Increases complexity unnecessarily

 Tampering concern in an untrusted API

 Constants are the only acceptable use of globals

 Nice try, but still doesn’t count:

public static final List<String> list = new ArrayList<String>(); public static final List<String> list = new ArrayList<String>();

Serial Killer

 Serialization is often unnecessary, difficult to get right

 Deserializing is essentially constructing an object
without executing the constructor
 If your system uses it, don’t assume the constructor will be

executed

 Can reverse-engineer to violate constructor post-
conditions

 Complex input!

 Also, serialized != encrypted
 Confidentiality disclosure

 Use transient for variables that don’t need serialization
e.g. environment info, timestamps, keys

Memory Organization

Assumptions
 Don’t rely upon the memory organization of the compiler

and OS

 E.g. C-code:

char a=5;
char b=3;
(&a+1)=0; / b is now 0 */
 /* this works, but not advisable */

 Lots of problems with this
 Compilers change

 OS’s change

 Dev environment vs. Customer environment

 Really difficult to debug

Dead Store Removal

 Don’t leave sensitive data sitting in memory longer than
needed
 Hibernation features dump RAM to HDD

 Segfault  core dump  passwords!

 The following is usually a good idea...

 …BUT!!! C++ .NET and gcc 3.x will optimize away that
last call since pwd is never used again
 So watch out for zealous compiler optimizations

void GetData(char *MFAddr) {
 char pwd[64];
 if (GetPasswordFromUser(pwd, sizeof(pwd))) {
 if (ConnectToMainframe(MFAddr, pwd)) {
 // Interact with mainframe
 }
 memset(pwd, 0, sizeof(pwd)); //clear password
 }
}

Environment & File Confusion

 In C/C++, the putenv() and getenv() vary OS to OS
 Change depending on the compiler and platform

 Sometimes case-sensitive, sometimes not

 An attacker can add an environment variable that overrides
yours (e.g. to his own JVM)

 Same with file names in Windows and Linux

 Do not rely on case sensitivity when interacting with the
platform

putenv("TEST_ENV=foo“);

putenv("Test_ENV=bar“);

const char *temp = getenv("TEST_ENV");

if (temp == NULL) { /* Handle error */ }

printf("%s\n", temp); /* foo on Linux, bar on Windows*/

Watch Character Conversions

 Most apps require I18N in some form
 You will need to convert one character set to another for

translation

 When apps “catch on”, I18N is usually an afterthought

 Not all character sets are the same size!
 Assume 4-bytes for a character? Buffer overrun on

Chinese chars

 Not every byte maps to a character

 Sometimes multiple bytes map to a single character

 Recommendations
 Use unicode: UTF-8 or UTF-16

 Don’t roll your own converters

 Check: web servers, database systems, command inputs

DoS in Many forms

 Denial of service occurs in many, many ways
 Overflow the hard drive

 Overflow memory  page faults

 Poor hashcodes  constant hash collisions

 Slow database queries

 Poor algorithmic complexity

 Deadlocks, race conditions, other concurrency

 Network bandwidth issues

 Recommendations:
 Black-box stress testing

 White-box, unit-level stress testing

 Focus less on user inputs, more on the logic

 Learn the art of profiling
e.g. java –agentlib:hprof

Don’t Forget Config Files!

 Vulnerabilities can also exist in system configuration
e.g. log overflow, hardcoded credentials, authorization problems

 Makefiles & Installation definitions
 Insecure compiler optimizations

e.g. dead store removal optimizations

 Using out-of-date, vulnerable dependencies

 Also:
 I18N configurations

 General configuration

 Example configurations

 Recommendation
 Bring these up in code inspections

 Look at the defaults, and what is missing

Other Defensive Coding via VotD

 Resource exhaustion

 Check the limits of your input
 Integer overflows

 Buffer overflows

 Error message information leakage

 Secure logging
 Log overflow

 Avoid logging stuff that’s sensitive anyway

 Limit use of privileged features of the language
 Use the Java Security Manager

 Classloader override

 Complex file system interaction

 Reflection Abuse

 More serialization restrictions

