Engineering Secure Software

DEFENSIVE CODING
TECHNIQUES

Part 2

—4

Last Time...

®
O]

OMOCOMOMOMONO;

Always code defensively

Principles

e Writing insecure code is easy
Maintainability still counts

Know thy APls

Complexity is the enemy of security
Don’t be paranoid

Tree of Knowledge

Validating Input
Sanitizing Input
Exception Handling
Subclassing
Immutability
Concurrency
Double-free

Concept: Attack Surface

Most exploits enter in through the Ul
Often the same interface the users see
Hence: input validation & sanitization

Attack surface
The number & nature of the inputs for a given system
Can be quantified
Usually compared

Attack surface increases with...
More inputs
e.g. new input fields, new features
Larger input space for a given input
e.g. allowing a markup language instead of plaintext

Let your GET mean GET

® HTTP protocols have different actions

* GET - for retrieving data (typical usage)
» POST, DELETE, etc. — modify stuff

® HTTP protocol specifies that GET actions should never
have a persistent effect (e.g. model)

e Even though you can encode parameters into URLs

» Greatly helps mitigate cross-site request forgery (CSRF)
» Rarely respected

@ This is okay:

Home

® This is not:

Change Name

Native Wrappers

If you use another language, you inherit
all of the risks in that language

e.g. Java Native Interface (JNI) can execute a
C program with a buffer overflow

Also: treat native calls as external
entities
Perform input validation & sanitization
Loaded at runtime - spoofing opportunity

Cloning is Insecure (and medically unethicalt

Every Java object has a clone() method
Often error-prone

Doesn’t do what you think it does
Most people don't abide by the contract

Even the Java architects don't like it

The Java Language Secure Coding Guidelines
from Oracle recommend not using
java.lang.Cloneable entirely.

Use your own copy mechanism if needed

public static -2 final

Global variables are evil

Mutable global variables are an abomination
Increases complexity unnecessarily
Tampering concern in an untrusted API
Constants are the only acceptable use of globals

Nice try, but still doesn’t count:

public static final List<String> list = new ArrayList<String>();

Serial Killer

Serialization is often unnecessary, difficult to get right

Deserializing is essentially constructing an object
without executing the constructor

If your system uses it, don’t assume the constructor will be
executed

Can reverse-engineer to violate constructor post-
conditions

Complex input!

Also, serialized !'= encrypted

Confidentiality disclosure

Use transient for variables that don’t need serialization
e.g. environment info, timestamps, keys

Memory Organization
Assumptions

Don’t rely upon the memory organization of the compiler
and OS

E.g. C-code:

char a=5;
char b=3;
(&a+1)=0; / b is now @ */
/* this works, but not advisable */

Lots of problems with this
Compilers change
OS’s change
Dev environment vs. Customer environment
Really difficult to debug

Dead Store Removal

@ Don't leave sensitive data sitting in memory longer than
needed
* Hibernation features dump RAM to HDD
* Segfault > core dump - passwords!

® The following is usually a good idea...

void GetData(char *MFAddr) {
char pwd[64];

if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
// Interact with mainframe

memset(pwd, O, sizeof(pwd)); //clear password

® ...BUTINI C++ NET and gcc 3.x will optimize away that
last call since pwd is never used again

* So watch out for zealous compiler optimizations

Environment & File Confusion

® In C/C++, the putenv() and getenv() vary OS to OS
* Change depending on the compiler and platform
* Sometimes case-sensitive, sometimes not

e An attacker can add an environment variable that overrides
yours (e.g. to his own JVM)

putenv("TEST_ENV=foo");
putenv("Test_ENV=Dbar");

const char *temp = getenv("TEST_ENV");
if (temp == NULL) { /* Handle error */ }
printf("%s\n", temp); /* foo on Linux, bar on Windows*/

® Same with file names in Windows and Linux

@ Do not rely on case sensitivity when interacting with the
platform

Watch Character Conversions

Most apps require 118N in some form

You wiII. need to convert one character set to another for
translation

When apps “catch on”, I18N is usually an afterthought

Not all character sets are the same size!

Assume 4-bytes for a character? Buffer overrun on
Chinese chars

Not every byte maps to a character
Sometimes multiple bytes map to a single character

Recommendations

Use unicode: UTF-8 or UTF-16
Don't roll your own converters

Check: web servers, database systems, command inputs

DoS in Many forms

Denial of service occurs in many, many ways
Overflow the hard drive
Overflow memory - page faults
Poor hashcodes - constant hash collisions
Slow database queries
Poor algorithmic complexity
Deadlocks, race conditions, other concurrency
Network bandwidth issues

Recommendations:
Black-box stress testing
White-box, unit-level stress testing
Focus less on user inputs, more on the logic

Learn the art of profiling
e.g. java -agentlib:hprof

Don’t Forget Config Files!

Vulnerabilities can also exist in system configuration
e.g. log overflow, hardcoded credentials, authorization problems

Makefiles & Installation definitions

Insecure compiler optimizations
e.g. dead store removal optimizations

Using out-of-date, vulnerable dependencies

Also:

18N configurations
General configuration
Example configurations

Recommendation
Bring these up in code inspections
Look at the defaults, and what is missing

Other Defensive Coding via VotD

Resource exhaustion

Check the limits of your input
Integer overflows
Buffer overflows

Error message information leakage

Secure logging
Log overflow
Avoid logging stuff that’s sensitive anyway

Limit use of privileged features of the language
Use the Java Security Manager
Classloader override
Complex file system interaction
Reflection Abuse
More serialization restrictions

