
Engineering Secure Software

Part 2

Last Time…

 Always code defensively

 Principles
 Writing insecure code is easy

 Maintainability still counts

 Know thy APIs

 Complexity is the enemy of security

 Don’t be paranoid

 Tree of Knowledge

 Validating Input

 Sanitizing Input

 Exception Handling

 Subclassing

 Immutability

 Concurrency

 Double-free

Concept: Attack Surface

 Most exploits enter in through the UI
 Often the same interface the users see

 Hence: input validation & sanitization

 Attack surface
 The number & nature of the inputs for a given system

 Can be quantified

 Usually compared

 Attack surface increases with…
 More inputs

 e.g. new input fields, new features

 Larger input space for a given input
 e.g. allowing a markup language instead of plaintext

Let your GET mean GET

 HTTP protocols have different actions
 GET – for retrieving data (typical usage)

 POST, DELETE, etc. – modify stuff

 HTTP protocol specifies that GET actions should never
have a persistent effect (e.g. model)

 Even though you can encode parameters into URLs

 Greatly helps mitigate cross-site request forgery (CSRF)

 Rarely respected

 This is okay:

 This is not:

Home Home

Change Name Change Name

Native Wrappers

 If you use another language, you inherit

all of the risks in that language

e.g. Java Native Interface (JNI) can execute a

C program with a buffer overflow

 Also: treat native calls as external

entities

 Perform input validation & sanitization

 Loaded at runtime spoofing opportunity

Cloning is Insecure (and Medically Unethical!)

 Every Java object has a clone() method

 Often error-prone

 Doesn’t do what you think it does

 Most people don’t abide by the contract

 Even the Java architects don’t like it

 The Java Language Secure Coding Guidelines

from Oracle recommend not using

java.lang.Cloneable entirely.

 Use your own copy mechanism if needed

public static final

 Global variables are evil

 Mutable global variables are an abomination

 Increases complexity unnecessarily

 Tampering concern in an untrusted API

 Constants are the only acceptable use of globals

 Nice try, but still doesn’t count:

public static final List<String> list = new ArrayList<String>(); public static final List<String> list = new ArrayList<String>();

Serial Killer

 Serialization is often unnecessary, difficult to get right

 Deserializing is essentially constructing an object
without executing the constructor
 If your system uses it, don’t assume the constructor will be

executed

 Can reverse-engineer to violate constructor post-
conditions

 Complex input!

 Also, serialized != encrypted
 Confidentiality disclosure

 Use transient for variables that don’t need serialization
e.g. environment info, timestamps, keys

Memory Organization

Assumptions
 Don’t rely upon the memory organization of the compiler

and OS

 E.g. C-code:

char a=5;
char b=3;
(&a+1)=0; / b is now 0 */
 /* this works, but not advisable */

 Lots of problems with this
 Compilers change

 OS’s change

 Dev environment vs. Customer environment

 Really difficult to debug

Dead Store Removal

 Don’t leave sensitive data sitting in memory longer than
needed
 Hibernation features dump RAM to HDD

 Segfault core dump passwords!

 The following is usually a good idea...

 …BUT!!! C++ .NET and gcc 3.x will optimize away that
last call since pwd is never used again
 So watch out for zealous compiler optimizations

void GetData(char *MFAddr) {
 char pwd[64];
 if (GetPasswordFromUser(pwd, sizeof(pwd))) {
 if (ConnectToMainframe(MFAddr, pwd)) {
 // Interact with mainframe
 }
 memset(pwd, 0, sizeof(pwd)); //clear password
 }
}

Environment & File Confusion

 In C/C++, the putenv() and getenv() vary OS to OS
 Change depending on the compiler and platform

 Sometimes case-sensitive, sometimes not

 An attacker can add an environment variable that overrides
yours (e.g. to his own JVM)

 Same with file names in Windows and Linux

 Do not rely on case sensitivity when interacting with the
platform

putenv("TEST_ENV=foo“);

putenv("Test_ENV=bar“);

const char *temp = getenv("TEST_ENV");

if (temp == NULL) { /* Handle error */ }

printf("%s\n", temp); /* foo on Linux, bar on Windows*/

Watch Character Conversions

 Most apps require I18N in some form
 You will need to convert one character set to another for

translation

 When apps “catch on”, I18N is usually an afterthought

 Not all character sets are the same size!
 Assume 4-bytes for a character? Buffer overrun on

Chinese chars

 Not every byte maps to a character

 Sometimes multiple bytes map to a single character

 Recommendations
 Use unicode: UTF-8 or UTF-16

 Don’t roll your own converters

 Check: web servers, database systems, command inputs

DoS in Many forms

 Denial of service occurs in many, many ways
 Overflow the hard drive

 Overflow memory page faults

 Poor hashcodes constant hash collisions

 Slow database queries

 Poor algorithmic complexity

 Deadlocks, race conditions, other concurrency

 Network bandwidth issues

 Recommendations:
 Black-box stress testing

 White-box, unit-level stress testing

 Focus less on user inputs, more on the logic

 Learn the art of profiling
e.g. java –agentlib:hprof

Don’t Forget Config Files!

 Vulnerabilities can also exist in system configuration
e.g. log overflow, hardcoded credentials, authorization problems

 Makefiles & Installation definitions
 Insecure compiler optimizations

e.g. dead store removal optimizations

 Using out-of-date, vulnerable dependencies

 Also:
 I18N configurations

 General configuration

 Example configurations

 Recommendation
 Bring these up in code inspections

 Look at the defaults, and what is missing

Other Defensive Coding via VotD

 Resource exhaustion

 Check the limits of your input
 Integer overflows

 Buffer overflows

 Error message information leakage

 Secure logging
 Log overflow

 Avoid logging stuff that’s sensitive anyway

 Limit use of privileged features of the language
 Use the Java Security Manager

 Classloader override

 Complex file system interaction

 Reflection Abuse

 More serialization restrictions

