
Engineering Secure Software

The Power of Source Code

 White box testing
 Testers have intimate knowledge of the specifications, design,

 Often done by the original developers

 Security consultants often get source code access too

 Code Inspections
 aka “Technical Reviews”, “Code Reviews”

 Stepping through code with security in mind

 Test & inspect the threats
 Enumerated by abuse cases, threat models, architectural risks

 Defensive coding concerns

 Testing Failure-finding technique
Inspection Fault-finding technique

 © 2011-2012 Andrew Meneely

What to test for?

 Test & inspect the security mitigations
 Bug in your mitigation vulnerability

 Bug in your security feature vulnerability

 Test for both types of vulnerabilities
 Low-level coding mistakes

 High-level design flaws

 Test at every scope
 Unit, integration, system

 Try to keep an equal effort emphasis on each

 Unit tests bugs in mitigations & features

 Integration interaction vulnerabilities

Who’s at the code inspection?

 Author
 Made significant contributions to the code recently

 Can answer any specific questions, or reveal blind spots

 People with readability, but objectivity
 e.g. close colleagues

 e.g. developer working on a similar feature on the same
project, but different team

 e.g. system architect

 People experienced with security
 Consultants, if any

 Developers on previous vulnerabilities in this system

Make an Inspection Checklist

 What will you talk about?
 Keep a running checklist for the meeting

 Adapt the checklist for future inspection meetings

 At the meeting, briefly identify the following that are
pertinent to this code
 Assets from risk analysis

 Threats from your threat models

 Malicious actors from your requirements

 Abuse and misuse cases from your requirements

 Walk through the functionality of the code
 Look for missing code more than wrong code

 “If they missed this, then they probably missed that”

More for the checklist

 Look for too much complexity
 Both structural and cognitive complexity

 Too much responsibility in one place

 Look for common defensive coding mistakes

 Look for opportunities to build security into the
design
 e.g. repeated input validation? Make input validation

the default

 e.g. file canonicalization is done all in one place

 e.g. using a third-party library

The Prioritization Problem

 What should we inspect?
 Can’t inspect everything

 Reacting to inspections can take some time

 Can be too repetitive

 Inspect what probably has vulnerabilities

 Three approaches:
 Code coverage – what have we not tested?

 Static analysis – what tools say is vulnerable

 Prediction – what history says is vulnerable

Code Coverage

 What has been executed as a result of our tests?
 e.g. have exceptions been tested?

 e.g. have we tested this input?

 Use a tool to record what code has been executed
 Levels: package, class, line, branch

 80% is a common threshold for line coverage

 Benefits
 Reveals what testers forgot

 Relatively simple to deploy and execute

 Disadvantages
 Unit test coverage != well-tested

 (add system tests to your coverage!)

 Test coverage != security test coverage

eclEMMA

Automated Static Analysis

 Static analysis
 Analyzing code without executing it

 Manual static analysis == code inspection

 Think: sophisticated compiler warnings

 Automated Static Analysis tools
 Provide warnings of common coding mistakes

 Use a variety of methods
○ Fancy grep searches

○ Symbolic execution & model checking

○ Data flow analysis

 Tools
 Non-security: FindBugs, PMD

 Security: Fortify, Coverity, JTest

ASA Benefits & Drawbacks

 Benefits
 Quick and easy

 Knowledge transfer from experts behind the tool

 Provides a specific context in the code to drive
the discussion

 Drawbacks
 Huge false positive rates: >90% are FP in many

cases

 Fault-finding exploitable?

 Biased to code-level vulnerabilities

 Cannot possibly identify domain-specific risks

 Better for inspections than tests

Prediction-Based Prioritization

 Vulnerabilities are rare
Typically, about 1% to 5% of source code files will require a

post-release patch for a vulnerability

 Prediction is possible
 Good metrics

 Trained machine-learning models

 Many metrics are correlated with vulnerabilities
 Files with previous vulnerabilities

 Files with high code churn

 Files committed to by many developers
e.g. 10+ developers coordinating on a single file? Improbable.

 Large files (==high cyclomatic complexity)

