Engineering Secure Software

WHITE BOX TESTING &
INSPECTIONS

The Power of Source Code

White box testing
Testers have intimate knowledge of the specifications, design,
Often done by the original developers
Security consultants often get source code access too

Code Inspections
aka “Technical Reviews”, “Code Reviews”
Stepping through code with security in mind

Test & inspect the threats
Enumerated by abuse cases, threat models, architectural risks
Defensive coding concerns

Testing - Failure-finding technique
Inspection - Fault-finding technique

What to test for?

Test & inspect the security mitigations
Bug in your mitigation - vulnerability
Bug in your security feature - vulnerability

Test for both types of vulnerabilities
Low-level coding mistakes
High-level design flaws

Test at every scope
Unit, integration, system
Try to keep an equal effort emphasis on each
Unit tests - bugs in mitigations & features
Integration - interaction vulnerabilities

Who'’s at the code inspection?

Author

Made significant contributions to the code recently
Can answer any specific questions, or reveal blind spots

People with readability, but objectivity
e.g. close colleagues

e.g. developer working on a similar feature on the same
project, but different team

e.g. system architect

People experienced with security
Consultants, if any
Developers on previous vulnerabilities in this system

Make an Inspection Checklist

What will you talk about?

Keep a running checklist for the meeting
Adapt the checklist for future inspection meetings

At the meeting, briefly identify the following that are
pertinent to this code

Assets from risk analysis

Threats from your threat models

Malicious actors from your requirements

Abuse and misuse cases from your requirements

Walk through the functionality of the code
Look for missing code more than wrong code
“If they missed this, then they probably missed.that®

More for the checklist

Look for too much complexity
Both structural and cognitive complexity
Too much responsibility in one place

Look for common defensive coding mistakes

Look for opportunities to build security into the
design

e.g. repeated input validation”? Make input validation
the default

e.g. file canonicalization is done all in one place
e.g. using a third-party library

The Prioritization Problem

What should we inspect?
Can’t inspect everything
Reacting to inspections can take some time
Can be too repetitive

Inspect what probably has vulnerabilities

Three approaches:
Code coverage — what have we not tested?
Static analysis — what tools say is vulnerable
Prediction — what history says is vulnerable

Code Coverage

What has been executed as a result of our tests?
e.g. have exceptions been tested?
e.g. have we tested this input?

Use a tool to record what code has been executed
Levels: package, class, line, branch
80% is a common threshold for line coverage

Benefits
Reveals what testers forgot
Relatively simple to deploy and execute

Disadvantages

Unit test coverage != well-tested
(add system tests to your coverage!)

Test coverage != security test coverage

eclEMMA

Element
4 =¥ CollabCloud -
4 [src/main/java Em
> £} org.chaotichits.collabcloud =

> £} org.chaoctichits.collabcloud visualizer.colc =8
> 4 org.chaoctichits.collabcloud visualizer.spir EE
> f# org.chaoticbits.collabcloud.visualizer.aval B
> f# org.chaoticbits.collabcloud.codeprocessc BN
> 4 org.chactichits.collabcloud visualizer.foni E

» 4 org.chaoctichits.collabcloud ve.svn .
» 4 org.chaotichits.collabcloud.ve =
> orleg

> orllE

i

Coverage Covered Instructio... Missed Irqstru ctions Total Instructions
629 % 1147 4568 12315
616 % 2971 1855 4826

100.0 % 158 0 158
100.0 % a1 0 El
100.0 % 243] 243
96.1 % 222 9 231
724 % n 27 9a
76.7 % 224 it 292
403 % 116 172 288
66.0 % 380 196 576

while {scanner.hasNextLinE{}}.{ /{ scan until the diff part

String line = scanner.nextline();
if (diffParser.isFile(line)}) {

currentSummarizable = diffParser.makeSummarizable(line
h

if (currentSummarizable != null)
diffParser.processTextLine(line, weights, contributior

} catch (IOException e) {
System.err.println("I0 Excepticn on commit " + commit.getId().
e.printStackTrace();

Automated Static Analysis

Static analysis

Analyzing code without executing it
Manual static analysis == code inspection
Think: sophisticated compiler warnings

Automated Static Analysis tools
Provide warnings of common coding mistakes
Use a variety of methods
o Fancy grep searches

o Symbolic execution & model checking
o Data flow analysis

Tools

Non-security: FindBugs, PMD
Security: Fortify, Coverity, JTest

ASA Benefits & Drawbacks

Benefits
Quick and easy
Knowledge transfer from experts behind the tool

Provides a specific context in the code to drive
the discussion

Drawbacks

Huge false positive rates: >90% are FP in many
cases

Fault-finding - exploitable?

Biased to code-level vulnerabilities

Cannot possibly identify domain-specificrisks
Better for inspections than tests

Prediction-Based Prioritization

Vulnerabilities are rare

Typically, about 1% to 5% of source code files will require a
post-release patch for a vulnerability

Prediction is possible
Good metrics
Trained machine-learning models

Many metrics are correlated with vulnerabilities
Files with previous vulnerabilities
Files with high code churn

Files committed to by many developers
e.g. 10+ developers coordinating on a single file? Improbable:

Large files (==high cyclomatic complexity)

