
Engineering Secure Software 



The Power of Source Code 

 White box testing 
 Testers have intimate knowledge of the specifications, design,  

 Often done by the original developers 

 Security consultants often get source code access too 

 

 Code Inspections 
 aka “Technical Reviews”, “Code Reviews” 

 Stepping through code with security in mind 

 

 Test & inspect the threats  
 Enumerated by abuse cases, threat models, architectural risks 

 Defensive coding concerns 

 

 Testing  Failure-finding technique 
Inspection  Fault-finding technique 

 

 
 © 2011-2012 Andrew Meneely 



What to test for? 

 Test & inspect the security mitigations 
 Bug in your mitigation  vulnerability 

 Bug in your security feature  vulnerability 

 

 Test for both types of vulnerabilities 
 Low-level coding mistakes 

 High-level design flaws 

 

 Test at every scope 
 Unit, integration, system 

 Try to keep an equal effort emphasis on each 

 Unit tests  bugs in mitigations & features 

 Integration  interaction vulnerabilities 

 



Who’s at the code inspection? 

 Author 
 Made significant contributions to the code recently 

 Can answer any specific questions, or reveal blind spots 

 

 People with readability, but objectivity 
 e.g. close colleagues 

 e.g. developer working on a similar feature on the same 
project, but different team 

 e.g. system architect 

 

 People experienced with security 
 Consultants, if any 

 Developers on previous vulnerabilities in this system 
 

 

 



Make an Inspection Checklist 

 What will you talk about? 
 Keep a running checklist for the meeting 

 Adapt the checklist for future inspection meetings 

 

 At the meeting, briefly identify the following that are 
pertinent to this code 
 Assets from risk analysis 

 Threats from your threat models 

 Malicious actors from your requirements 

 Abuse and misuse cases from your requirements 

 

 Walk through the functionality of the code 
 Look for missing code more than wrong code 

 “If they missed this, then they probably missed that” 

 

 



More for the checklist 

 Look for too much complexity 
 Both structural and cognitive complexity 

 Too much responsibility in one place 

 

 Look for common defensive coding mistakes 

 

 Look for opportunities to build security into the 
design 
 e.g. repeated input validation? Make input validation 

the default 

 e.g. file canonicalization is done all in one place 

 e.g. using a third-party library 



The Prioritization Problem 

 What should we inspect? 
 Can’t inspect everything  

 Reacting to inspections can take some time 

 Can be too repetitive 

 

 Inspect what probably has vulnerabilities 
 

 Three approaches: 
 Code coverage – what have we not tested? 

 Static analysis – what tools say is vulnerable 

 Prediction – what history says is vulnerable 

 

 
 



Code Coverage 

 What has been executed as a result of our tests? 
 e.g. have exceptions been tested? 

 e.g. have we tested this input? 

 

 Use a tool to record what code has been executed 
 Levels: package, class, line, branch 

 80% is a common threshold for line coverage 

 

 Benefits 
 Reveals what testers forgot 

 Relatively simple to deploy and execute 

 

 Disadvantages 
 Unit test coverage != well-tested 

     (add system tests to your coverage!) 

 Test coverage != security test coverage 

 

 



eclEMMA 

 



Automated Static Analysis 

 Static analysis  
 Analyzing code without executing it 

 Manual static analysis == code inspection 

 Think: sophisticated compiler warnings 

 

 Automated Static Analysis tools 
 Provide warnings of common coding mistakes 

 Use a variety of methods  
○ Fancy grep searches 

○ Symbolic execution & model checking 

○ Data flow analysis 

 

 Tools 
 Non-security: FindBugs, PMD 

 Security: Fortify, Coverity, JTest 

 



ASA Benefits & Drawbacks 

 Benefits  
 Quick and easy 

 Knowledge transfer from experts behind the tool 

 Provides a specific context in the code to drive 
the discussion 

 

 Drawbacks 
 Huge  false positive rates: >90% are FP in many 

cases 

 Fault-finding  exploitable? 

 Biased to code-level vulnerabilities 

 Cannot possibly identify domain-specific risks 

 Better for inspections than tests 

 

 



Prediction-Based Prioritization 

 Vulnerabilities are rare 
Typically, about 1% to 5% of source code files will require a 

post-release patch for a vulnerability 

 

 Prediction is possible  
 Good metrics  

 Trained machine-learning models 

 

 Many metrics are correlated with vulnerabilities 
 Files with previous vulnerabilities 

 Files with high code churn 

 Files committed to by many developers 
e.g. 10+ developers coordinating on a single file? Improbable. 

 Large files (==high cyclomatic complexity) 

 

 


