
Engineering Secure Software

Linux File Permissions

 Each file and directory has bits for..
 Read, Write, Execute: rwx

 Files: works as it sounds

 Directories:
 r  “can list files in a directory” (but not read a given file)

 x  “read a file if you know the name” (easy if directory also has read)

 w  “can create, change, delete files in directory”

 Thus, you may only read a file IFF you:

 Have read permissions to the file AND

 Have execute permissions to that file’s directory

 Files & Directories have 3 levels:
 Owner, Group, and Everyone Else

 aka. User, Group, Other: ugo

 List permissions of a file: ls –l
 with some info removed from below in [...]

 drwx--x--- […] andy faculty […] .
 drwx------ […] andy faculty […] ..
 -rwxrwxrwx […] andy faculty […] allopen
 drwx------ […] andy faculty […] mydir
 -rw------- […] andy faculty […] myfile
 -rwx------ […] andy faculty […] myprog
 drwxrwx--- […] andy faculty […] ourdir
 -rwxrwx--- […] kenn faculty […] ourprog

 Can kenn execute myprog?

 No, because of file permissions.

 Can both andy and kenn execute ourprog?

 Yes. Everyone in faculty can read and execute myprog
 Can kenn read ourprog?

 Yes. Directory has group x, file has group r

 Can kenn list to find ourprog?

 No. Directory listing is off.

chmod
 Command to change permissions

 Set (=), Add (+), Remove (-)

 Set user to rw, not x: chmod u=rw .
 Set user, groups to only rw: chmod ug=rw .

 Set ug to only rx, recursively: chmod –R ug=rx .

 Add “groups can rw”: chmod g+rw .
 Add “others can rw”: chmod o+rw .
 Add “everyone can read”: chmod a+r .
 Remove write from group: chmod g-w .

 Octal notation

 e.g. chmod 755 file.txt
 Good for setting, not adding/removing

 1,2,3 are never used

rwx --- --x -w- -wx r-- r-x rw- rwx

Binary 000 001 010 011 100 101 110 111

Decimal 0 1 2 3 4 5 6 7

umask

 When a file is created…
 User mask (umask) is consulted for permissions

 Owner = user who created the file

 Subtract octally
○ from 666 for files

○ from 777 for directories

○ e.g. 666-022=644, or rw-r--r--

 nitron.se.rit.edu default: rw------- (or 077)

 Common default: rw-r--r– (or 022)

 Common umask shared group stuff: rw-rw-r– (or 007)

 Programs can change their own umask
 Blessing for good developers

 Curse for system administrators

setuid, setgid

 When executing, ordinarily…
 OS ignores the owner of the program

 Runs the program as you

 (assuming you have permissions, of course)

 e.g. prog.sh owned by root gets run as you

 setuid and setgid bits on files

 chmod ug+s ./prog.sh
 “If you can execute this, it’s executed as the owner’s rights, not

as the executing user’s rights”

 Files owned by root should never have this set

 Different from the “sticky bit” (not covered here)

 setuid and setgid bits on directories
 setuid on directories is ignored in Linux

 setgid means new files inherit the group ID (like umask)

For Example
 larry$ umask

077
 larry$ mkdir dir

larry$ ls –l dir/
 drwx------ … larry stooges … dir
 larry$ touch dir/file.sh

larry$ ls –la dir/
 -rwx------ … larry stooges … . [./dir]

-rwx------ … larry stooges … .. [./dir/..]
-rw------- … larry stooges … file.sh

 larry$./dir/file.sh
 bash: ./dir/file.sh: Permission denied
 larry$ chmod –R ug+x .

 curly$./dir/file.sh

[Success!]
 curly$ ls –l ./dir
 bash: ./dir/: Permission denied

Beware of sudo

 He sees you when you're sleeping, he knows when
you're awake, he's copied on /var/spool/mail/root, so
be good for goodness' sake.

 Source: http://xkcd.com/838

