
Engineering Secure Software

Linux File Permissions

 Each file and directory has bits for..
 Read, Write, Execute: rwx

 Files: works as it sounds

 Directories:
 r “can list files in a directory” (but not read a given file)

 x “read a file if you know the name” (easy if directory also has read)

 w “can create, change, delete files in directory”

 Thus, you may only read a file IFF you:

 Have read permissions to the file AND

 Have execute permissions to that file’s directory

 Files & Directories have 3 levels:
 Owner, Group, and Everyone Else

 aka. User, Group, Other: ugo

 List permissions of a file: ls –l
 with some info removed from below in [...]

 drwx--x--- […] andy faculty […] .
 drwx------ […] andy faculty […] ..
 -rwxrwxrwx […] andy faculty […] allopen
 drwx------ […] andy faculty […] mydir
 -rw------- […] andy faculty […] myfile
 -rwx------ […] andy faculty […] myprog
 drwxrwx--- […] andy faculty […] ourdir
 -rwxrwx--- […] kenn faculty […] ourprog

 Can kenn execute myprog?

 No, because of file permissions.

 Can both andy and kenn execute ourprog?

 Yes. Everyone in faculty can read and execute myprog
 Can kenn read ourprog?

 Yes. Directory has group x, file has group r

 Can kenn list to find ourprog?

 No. Directory listing is off.

chmod
 Command to change permissions

 Set (=), Add (+), Remove (-)

 Set user to rw, not x: chmod u=rw .
 Set user, groups to only rw: chmod ug=rw .

 Set ug to only rx, recursively: chmod –R ug=rx .

 Add “groups can rw”: chmod g+rw .
 Add “others can rw”: chmod o+rw .
 Add “everyone can read”: chmod a+r .
 Remove write from group: chmod g-w .

 Octal notation

 e.g. chmod 755 file.txt
 Good for setting, not adding/removing

 1,2,3 are never used

rwx --- --x -w- -wx r-- r-x rw- rwx

Binary 000 001 010 011 100 101 110 111

Decimal 0 1 2 3 4 5 6 7

umask

 When a file is created…
 User mask (umask) is consulted for permissions

 Owner = user who created the file

 Subtract octally
○ from 666 for files

○ from 777 for directories

○ e.g. 666-022=644, or rw-r--r--

 nitron.se.rit.edu default: rw------- (or 077)

 Common default: rw-r--r– (or 022)

 Common umask shared group stuff: rw-rw-r– (or 007)

 Programs can change their own umask
 Blessing for good developers

 Curse for system administrators

setuid, setgid

 When executing, ordinarily…
 OS ignores the owner of the program

 Runs the program as you

 (assuming you have permissions, of course)

 e.g. prog.sh owned by root gets run as you

 setuid and setgid bits on files

 chmod ug+s ./prog.sh
 “If you can execute this, it’s executed as the owner’s rights, not

as the executing user’s rights”

 Files owned by root should never have this set

 Different from the “sticky bit” (not covered here)

 setuid and setgid bits on directories
 setuid on directories is ignored in Linux

 setgid means new files inherit the group ID (like umask)

For Example
 larry$ umask

077
 larry$ mkdir dir

larry$ ls –l dir/
 drwx------ … larry stooges … dir
 larry$ touch dir/file.sh

larry$ ls –la dir/
 -rwx------ … larry stooges … . [./dir]

-rwx------ … larry stooges … .. [./dir/..]
-rw------- … larry stooges … file.sh

 larry$./dir/file.sh
 bash: ./dir/file.sh: Permission denied
 larry$ chmod –R ug+x .

 curly$./dir/file.sh

[Success!]
 curly$ ls –l ./dir
 bash: ./dir/: Permission denied

Beware of sudo

 He sees you when you're sleeping, he knows when
you're awake, he's copied on /var/spool/mail/root, so
be good for goodness' sake.

 Source: http://xkcd.com/838

