Engineering Secure Software

LINUX PERMISSIONS

Linux File Permissions

Each file and directory has bits for..
Read, Write, Execute: rwx
Files: works as it sounds

Directories:
r = “can list files in a directory” (but not read a given file)
X =2 “read a file if you know the name” (easy if directory also has read)
w - “can create, change, delete files in directory”

Thus, you may only read a file IFF you:
Have read permissions to the file AND
Have execute permissions to that file’s directory

Files & Directories have 3 levels:
Owner, Group, and Everyone Else
aka. User, Group, Other: ugo

List permissions of a file: 1s -1
with some info removed from below in [...]

drwx--x--- [..] andy faculty [..]
drwx------ ...] andy faculty [..] ..
-rwxrwxrwx [..] andy faculty [..] allopen
drwx------ ...] andy faculty [..] mydir
-PW------- ...] andy faculty [..] myfile
-PWX------ ...] andy faculty [..] myprog
drwxrwx--- [..] andy faculty [..] ourdir
-rwxrwx--- [..] kenn faculty [..] ourprog

Can kenn execute myprog?
No, because of file permissions.
Can both andy and kenn execute ourprog?
Yes. Everyone in faculty can read and execute myprog
Can kenn read ourprog?
Yes. Directory has group x, file has groupsr
Can kenn list to find ourprog?
No. Directory-listingris Off.

chmod

Command to change permissions
Set (=), Add (+), Remove (-)

Set user to rw, not x: chmod
Set user, groups to only rw: chmod
Set ug to only rx, recursively: chmod
Add “groups can rw’”: chmod
Add “others can rw’: chmod
Add “everyone can read”: chmod
Remove write from group: chmod

Octal notation
e.g. chmod 755 file.txt
Good for setting, not adding/removing
1,2,3 are never used

u=rw .
ug=rw .

-R ug=rx .
g+rw .
o+rw .

a+r .

g-w .

rwx --= ==X -=W- -WX r-- r-x rw- rwx
Binary ©000 001 010 011 100 101 110 111
Decimal) 1 2 3 4 5 6 7

umask

When a file is created...
User mask (umask) is consulted for permissions

Owner = user who created the file

Subtract octally

o from 666 for files

o from 777 for directories

o e.g. 666-022=644, or rw-r--r--
nitron.se.rit.edu default: rw------- (or 077)

Common default: rw-r--r- (or 022)
Common umask shared group stuff: rw-rw-r- (or 007)

Programs can change their own umask

Blessing for good developers
Curse for system administrators

setuld, setgid

When executing, ordinarily...
OS ignores the owner of the program
Runs the program as you
(assuming you have permissions, of course)
e.g. prog.sh owned by root gets run as you

setuid and setgid bits on files
chmod ug+s ./prog.sh

“If you can execute this, it's executed as the owner’s rights, not
as the executing user’s rights”

Files owned by root should never have this set
Different from the “sticky bit” (not covered here)

setuid and setgid bits on directories
setuid on directories is ignored in Linux
setgid means new files inherit the group ID (likesumask)

For Example

larry$ umask
Q77

larry$ mkdir dir
larry$ 1s -1 dir/

drwx------ .. larry stooges .. dir

larry$ touch dir/file.sh
larry$ 1s -1la dir/

-PWX------ .. larry stooges .. . [./dir]
-PWX------ .. larry stooges [./dir/..]
-PW------- .. larry stooges .. file.sh

larry$./dir/file.sh
bash: ./dir/file.sh: Permission denied
larry$ chmod -R ug+x .

curly$./dir/file.sh
[Success!]

curly$ 1s -1 ./dir
bash: ./dir/: Permission denied

Beware of sudo

robm@homebox ~§ Sudo su HEY — WHO DOES

Possword: SUDO REPORT TH

robm is not inthe sudoers file, INCIDENTS" 77 BE

This incident will be reported. '

robm@homebox ~% i YOU KNOUW, TVE
NEVER CHECKED.

:
:

|

I Hl
iittl

i

[
=

::1
b
X
)
]
5\

He sees you when you're sleeping, he knows when
you're awake, he's copied on /var/spool/mail/roet;so

be good for goodness' sake.
Source: http://xkcd.com/838

