
Engineering Secure Software

Networks, Crypto, & You.

 Most application developers…
 Don’t implement networking protocols

 Don’t implement encryption algorithms

 Knowing how to safely deploy them,
however, is paramount
 Different situations call for different techniques

○ Types of Authentication

○ One-way digests (hashes)

○ Symmetric-key vs. Public-key

○ Trusting public keys

 Know Thy Algorithms instead of “just use crypto”

© 2011-2012 Andrew Meneely

The Basic Problems

 The internet is a scary, scary place
 Anyone can join

 Anyone can sniff

 BUT! “distrust everything all the time” is not feasible

 Authentication: are you who you say your are?
 Trust must be built somehow

 Encryption: can someone else listen in?

 Authentication & Encryption overlap in techniques
 How do we encrypt data for someone we do not trust?

 How do we know nobody else has the key?

 How do authenticate this machine?

Multi-Factor Authentication

 Security experts recommend that we utilize three types of
authentication…

 Something you know
 e.g. passwords

 Can be guessed, though

 Something you have
 Maybe a physical item

 Maybe a one-time randomly generated key

 e.g. both: pre-seeded secure PRNG key fob

 Something you are
 Biometrics? Tons of false positives

 Easier for humans, at least right now
(e.g. face recognition)

Hash Digests

 Problem: sensitive data needs to be identified
only by the original user, nobody else
e.g. user wants to authenticate, but we don’t want to

store passwords in plain text in case an attacker
breaks in

 Solution: hash digest algorithms
 Compute a very large number based on a chunk of

data
○ The more numbers it can map to, the better (e.g. 2128)

○ Similar chunks of data should not compute to the same
hash

 Same number? Highly probable it’s the same data

Authentication with Hashes
 Use Case: (re)set password

 User inputs password

 Server hashes pw

 Stores the hash

 Abuse Case: Break-in
 Attacker steals plaintext

passwords from Database

 Harm done: can authenticate
as any user

 Mitigation: can’t reverse the
hashes

 Use Case: Authenticate
 User inputs password

 Server computes hash

 Checks the hashes

Abuse Case: Rainbow Tables

 What if an attacker steals the hashes?

 common passwords + common digests =

common hashes

 Thus, attackers have large databases of

pre-computed hashes called rainbow tables

 Solution: hashing with salt

 Today’s VotD

Hash Collisions

 By definition, hash digests cannot uniquely
map data to a hash
 Thus, many pieces of data map to the same hash

 A collision is two known pieces of data that map to
the same hash number

 Can be used to “spoof” a password

 MD4, MD5 & SHA1 now considered “broken”
 Colliding digests can be manufactured

 http://www.phreedom.org/research/rogue-ca/

 Still cannot be reversed, and probably won’t be

http://www.phreedom.org/research/rogue-ca/
http://www.phreedom.org/research/rogue-ca/
http://www.phreedom.org/research/rogue-ca/

Symmetric-Key Cryptography

 Encrypt key == Decrypt key
 So keep that key a secret!!

 Traditional arrangement

 Modern algorithms
 AES

 Blowfish

 3DES

 Traditional usage
 Encryption of data storage: backups, hard drives, etc.

 Not typically for networking situations
○ Both parties need the same key

○ Can’t send that key in the open over the wire

○ Could hard-code the keys ahead of time, but what if we need to
change the key??

Public-Key Cryptography

 Encrypt key is public,
Decrypt key is private
 Anyone in the world can encrypt data and send it do you

 But they can’t decrypt any other messages sent to you

 Most popular modern algorithm: RSA
 Factorization of two prime numbers

 Public/private keys generated from computing two very large
prime numbers

 RSA has never been cracked, although…
 The algorithms for generating very large primes have been

cracked/poorly implemented many times

 Result of poor PRNG practices (bad algorithms & bad seeds)

 Traditional usage: networking (SSH, SSL, PGP)

Public-key Authentication

 E[..] is “encrypt” (public)
D[..] is “decrypt” (private)
 D[E[m]]=m is encrypt then decrypt m (normal usage)

 D[m] is use the decryption on plain text m (strange, but legal)

 Scenario: Adam and Eve
 Adam’s public and private: EAdam[..] and DAdam[..]

 Eve’s public and private: EEve[..] and DEve[..]

 They know each others’ public keys
○ Adam has access to EEve[..]

○ Eve has access to EAdam[..]

 Adam wants to ensure Eve that the message came from him,
 So he does: m=“This should be bubbles: DAdam[bubbles]”

 Sends EEve[m] to Eve – only Eve can read the message with DEve [m]

 Eve checks EAdam[DAdam[bubbles]]=bubbles so that the message came
from Adam, and not, say, her son Cain.

Drawbacks of Public Key
 Implementation issues

 Tends to be slower than traditional symmetric key

 Generating primes with 50+ digits is hard

 How do we trust the public key?
 What if Eve confuses EAdam with ESatan?

 Man-in-the-middle attack
○ Satan intercepts it

○ Decrypts it

○ Reads it

○ Re-encrypts it properly

○ Sends it off to Adam

SSH

 Secure Shell
 Used for remote access into machines

 Ubiquitous for Unix-like systems

 Uses passwords by default

 SSH and public keys
 Key pairs have a one-time PRNG built in

 Private key
○ Encrypted with a symmetric cipher

○ Requires a “passphrase” to unlock

 Trust the public keys? authorized_keys

 Trust the host? known_hosts

e.g. SSH Key pairs

me@client$ ssh-keygen –t rsa
Generating public/private rsa1 key pair...
Enter file in which to save the key (~/.ssh/identity):
Enter passphrase:
Enter same passphrase again:
Your public key has been saved in ~/.ssh/id_rsa.pub
Your private key has been saved in ~/.ssh/id_rsa
The key fingerprint is:

22:bc:0b:fe:f5:06:1d:c0:05:ea:59:09:e3:07:8a:8c

 Untrusted public keys?
 SSH-enabled servers don’t trust any public keys initially

 Need to copy your public key to the authorized_keys file on the server

me@client$ scp ~/id_rsa.pub me@server.edu:~
me@client$ ssh me@server.edu
me@server$ cat id_rsa.pub >> ~/.ssh/authorized_keys

SSH and known_hosts
 When I SSH into nitron, how do I know that this

isn’t a malicious server who changed his network
address?

 Answer: your known_hosts file
 Every server has a unique fingerprint

 First time you sign in, trust the key and add the key to your
known_hosts cache

 Host changes? You’ll get a warning like this:
 @@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-
the-middle attack)! It is also possible that the RSA host
key has just been changed. The fingerprint for the RSA key
sent by the remote host is
8b:ff:a1:b5:08:2f:8f:fd:2e:2f:67:80:9e:ba:8d:ff. Please
contact your system administrator. Add correct host key in
/home/bob/.ssh/known_hosts to get rid of this message.
Offending key in /home/bob/.ssh/known_hosts:2 RSA host key
for 192.168.1.100 has changed and you have requested strict
checking. Host key verification failed.

Next time…

 More common algorithms

 Public key: SSL

 Combination of Public and Symmetric: PGP

 Some common cryptanalysis techniques

