
Engineering Secure Software

Networks, Crypto, & You.

 Most application developers…
 Don’t implement networking protocols

 Don’t implement encryption algorithms

 Knowing how to safely deploy them,
however, is paramount
 Different situations call for different techniques

○ Types of Authentication

○ One-way digests (hashes)

○ Symmetric-key vs. Public-key

○ Trusting public keys

 Know Thy Algorithms instead of “just use crypto”

© 2011-2012 Andrew Meneely

The Basic Problems

 The internet is a scary, scary place
 Anyone can join

 Anyone can sniff

 BUT! “distrust everything all the time” is not feasible

 Authentication: are you who you say your are?
 Trust must be built somehow

 Encryption: can someone else listen in?

 Authentication & Encryption overlap in techniques
 How do we encrypt data for someone we do not trust?

 How do we know nobody else has the key?

 How do authenticate this machine?

Multi-Factor Authentication

 Security experts recommend that we utilize three types of
authentication…

 Something you know
 e.g. passwords

 Can be guessed, though

 Something you have
 Maybe a physical item

 Maybe a one-time randomly generated key

 e.g. both: pre-seeded secure PRNG key fob

 Something you are
 Biometrics? Tons of false positives

 Easier for humans, at least right now
(e.g. face recognition)

Hash Digests

 Problem: sensitive data needs to be identified
only by the original user, nobody else
e.g. user wants to authenticate, but we don’t want to

store passwords in plain text in case an attacker
breaks in

 Solution: hash digest algorithms
 Compute a very large number based on a chunk of

data
○ The more numbers it can map to, the better (e.g. 2128)

○ Similar chunks of data should not compute to the same
hash

 Same number? Highly probable it’s the same data

Authentication with Hashes
 Use Case: (re)set password

 User inputs password

 Server hashes pw

 Stores the hash

 Abuse Case: Break-in
 Attacker steals plaintext

passwords from Database

 Harm done: can authenticate
as any user

 Mitigation: can’t reverse the
hashes

 Use Case: Authenticate
 User inputs password

 Server computes hash

 Checks the hashes

Abuse Case: Rainbow Tables

 What if an attacker steals the hashes?

 common passwords + common digests =

common hashes

 Thus, attackers have large databases of

pre-computed hashes called rainbow tables

 Solution: hashing with salt

 Today’s VotD

Hash Collisions

 By definition, hash digests cannot uniquely
map data to a hash
 Thus, many pieces of data map to the same hash

 A collision is two known pieces of data that map to
the same hash number

 Can be used to “spoof” a password

 MD4, MD5 & SHA1 now considered “broken”
 Colliding digests can be manufactured

 http://www.phreedom.org/research/rogue-ca/

 Still cannot be reversed, and probably won’t be

http://www.phreedom.org/research/rogue-ca/
http://www.phreedom.org/research/rogue-ca/
http://www.phreedom.org/research/rogue-ca/

Symmetric-Key Cryptography

 Encrypt key == Decrypt key
 So keep that key a secret!!

 Traditional arrangement

 Modern algorithms
 AES

 Blowfish

 3DES

 Traditional usage
 Encryption of data storage: backups, hard drives, etc.

 Not typically for networking situations
○ Both parties need the same key

○ Can’t send that key in the open over the wire

○ Could hard-code the keys ahead of time, but what if we need to
change the key??

Public-Key Cryptography

 Encrypt key is public,
Decrypt key is private
 Anyone in the world can encrypt data and send it do you

 But they can’t decrypt any other messages sent to you

 Most popular modern algorithm: RSA
 Factorization of two prime numbers

 Public/private keys generated from computing two very large
prime numbers

 RSA has never been cracked, although…
 The algorithms for generating very large primes have been

cracked/poorly implemented many times

 Result of poor PRNG practices (bad algorithms & bad seeds)

 Traditional usage: networking (SSH, SSL, PGP)

Public-key Authentication

 E[..] is “encrypt” (public)
D[..] is “decrypt” (private)
 D[E[m]]=m is encrypt then decrypt m (normal usage)

 D[m] is use the decryption on plain text m (strange, but legal)

 Scenario: Adam and Eve
 Adam’s public and private: EAdam[..] and DAdam[..]

 Eve’s public and private: EEve[..] and DEve[..]

 They know each others’ public keys
○ Adam has access to EEve[..]

○ Eve has access to EAdam[..]

 Adam wants to ensure Eve that the message came from him,
 So he does: m=“This should be bubbles: DAdam[bubbles]”

 Sends EEve[m] to Eve – only Eve can read the message with DEve [m]

 Eve checks EAdam[DAdam[bubbles]]=bubbles so that the message came
from Adam, and not, say, her son Cain.

Drawbacks of Public Key
 Implementation issues

 Tends to be slower than traditional symmetric key

 Generating primes with 50+ digits is hard

 How do we trust the public key?
 What if Eve confuses EAdam with ESatan?

 Man-in-the-middle attack
○ Satan intercepts it

○ Decrypts it

○ Reads it

○ Re-encrypts it properly

○ Sends it off to Adam

SSH

 Secure Shell
 Used for remote access into machines

 Ubiquitous for Unix-like systems

 Uses passwords by default

 SSH and public keys
 Key pairs have a one-time PRNG built in

 Private key
○ Encrypted with a symmetric cipher

○ Requires a “passphrase” to unlock

 Trust the public keys? authorized_keys

 Trust the host? known_hosts

e.g. SSH Key pairs

me@client$ ssh-keygen –t rsa
Generating public/private rsa1 key pair...
Enter file in which to save the key (~/.ssh/identity):
Enter passphrase:
Enter same passphrase again:
Your public key has been saved in ~/.ssh/id_rsa.pub
Your private key has been saved in ~/.ssh/id_rsa
The key fingerprint is:

22:bc:0b:fe:f5:06:1d:c0:05:ea:59:09:e3:07:8a:8c

 Untrusted public keys?
 SSH-enabled servers don’t trust any public keys initially

 Need to copy your public key to the authorized_keys file on the server

me@client$ scp ~/id_rsa.pub me@server.edu:~
me@client$ ssh me@server.edu
me@server$ cat id_rsa.pub >> ~/.ssh/authorized_keys

SSH and known_hosts
 When I SSH into nitron, how do I know that this

isn’t a malicious server who changed his network
address?

 Answer: your known_hosts file
 Every server has a unique fingerprint

 First time you sign in, trust the key and add the key to your
known_hosts cache

 Host changes? You’ll get a warning like this:
 @@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-
the-middle attack)! It is also possible that the RSA host
key has just been changed. The fingerprint for the RSA key
sent by the remote host is
8b:ff:a1:b5:08:2f:8f:fd:2e:2f:67:80:9e:ba:8d:ff. Please
contact your system administrator. Add correct host key in
/home/bob/.ssh/known_hosts to get rid of this message.
Offending key in /home/bob/.ssh/known_hosts:2 RSA host key
for 192.168.1.100 has changed and you have requested strict
checking. Host key verification failed.

Next time…

 More common algorithms

 Public key: SSL

 Combination of Public and Symmetric: PGP

 Some common cryptanalysis techniques

