
Engineering Secure Software

SE Doesn’t End at Release

 Deployment counts too
 Despite our best efforts to produce secure software

 Vulnerabilities can exist only when deployed in a
production environment

 Users expect “secure by default”

 Your organization needs to be ready
 Incident response plan

 Version control practices

 Your installation & config scripts count
 Recommended firewall configuration

 Security manager configuration

Recent PostgreSQL Incident

 PostgreSQL reported a show-stopping vulnerability found
on April 4th, 2013
 http://www.postgresql.org/support/security/faq/2013-04-04/

 “Argument injection vulnerability in PostgreSQL [9.2.x ..]
allows remote attackers to cause a denial of service (file
corruption), and allows remote authenticated users to
modify configuration settings and execute arbitrary code,
via a connection request using a database name that
begins with a "-" (hyphen).”

 “The vulnerability allows users to use a command-line
switch for a PostgreSQL connection intended for single-
user recovery mode while PostgreSQL is running in
normal, multiuser mode. This can be used to harm the
server.”

How PostgreSQL Responded

 Embargo on the bug: March 13th – April 4th

 Removed the public version control repositories
during the embargo

 Announced on the mailing lists to expect an
immediate upgrade soon, without much detail

 Contacted vendors especially affected (e.g.
Heroku)
 Core PosgreSQL developers assisted the vendors

directly

 Tested patches on vendor’s environments

 Heroku already had a history of working directly with
developers on experimental features

Incident Response Plan

 Incident definition
 How do you know that this behavior is bad?

 Use high-level risks & indicators from your initial risk
assessment

 Establish who is involved
 Monitoring duties

 Contacts for an issue

 Security response team

 Chain of escalation
 Know who to contact to fix the problem

 Who sees the bugs
(e.g. Cisco CEO gets daily escalation reports)

Incident Response Plan (2)

 Establish Procedures
 Writing the patch

 Testing the patch

 Security expert review of a patch

 Reacting to specific exploits

 Establish working relationships with key
vendors

 Establish criteria for notifying the world
 Too late? Active exploits make you look behind

 Too early?
○ Unnecessary panic

○ Invites exploits

Version Control Practices

 Releases are treated as branches
 Most current version: trunk branch

○ aka upstream

○ Continuously-updated to the latest version

 Maintenance: release branch
○ Diverges from the main truck

○ New change to an old release? Backport

 Upstreams and backports can differ if the code has since
changed a lot

 Configuration management coordinator
 Keeps track of all the branches and releases

 New devs often work on backports

 Keeps track of “testing gotchas” from one release to
another (e.g. environment change, or non-change)

Upstream & Backport

Patch 1.0 Release

/branches/1.0

Upstream

/trunk

1.1

r45547

r45546

…

r45545

Vulnerability

Upstream commit

backport

Configuration

coordinator Security

Response Team

 Sometimes…
 Vulnerabilities were introduced by a

backport (regression)

 Vulnerabilities only affect 1.0, not upstream

 Vulnerabilities affect some branches, but
not others

Releasing Patched Versions

 You will need to release patched versions of your product

 “Patch it yourself” approach (e.g. Adobe Flash, Acrobat)

 Software contacts the vendor periodically and downloads software

 Benefit: simple, easy, you control how it works

 Drawback:
○ Non-root installations mean malware can spoof the update site, or

disable it

○ Reverting a bad release is not usually supported

 Package manager approach
(e.g. apt-get, yum, Mac App Store)

 Benefits
○ OS support means packages are handled all in one place

○ Harder to compromise: uses hash digests to verify

 Drawback: can annoy users
 “package X.1.2 isn’t in the system?!?!?”

Firewalls

 Designed to be the gatekeeper for networks
 Allow|Block IP addresses & Ports

 Forward traffic to different ports

 Network Address Translation (NAT)

 Installation scripts often need to configure the
firewalls

 IPTables, the Linux firewall
 Create “tables of chains of rules”

○ Table: group of chains for a given action
(e.g. NAT, Filter, Routing, custom, etc.)

○ Chain: an ordered group of rules

○ Rule: specific definition of what’s in and what’s out

 e.g. view your Filter table:
iptables -t filter --list

e.g. IPTables Rules
 Command line

 -A  append to chain, -j  jump target (ACCEPT, DROP, etc.)

 -s  source of the packet, -d  destination of the packet

 -dport  destination port on local machine, --sport  source port

 -i  input network interface (e.g. network card driver), -o  output interface

 --state  packet states to match (e.g. NEW, ESTABLISHED), -p  protocol

 Drop all packets coming from a specific IP address

iptables -A INPUT –s 129.21.208.62 -j DROP

 Allow SSH packets in and out

iptables -A INPUT -i eth0 -p tcp --dport 22 -m state --
state NEW,ESTABLISHED -j ACCEPT

 iptables -A OUTPUT -o eth0 -p tcp --sport 22 -m state
--state ESTABLISHED -j ACCEPT

e.g. More IPTables rules

 Forward port on IP address 192.168.102.37 from 422 to 22

iptables -t nat -A PREROUTING -p tcp -d 192.168.102.37
--dport 422 -j DNAT --to 192.168.102.37:22

 DoS mitigation: When we see a burst of 100 connections/min, limit
to 25 connections/min on port 80

iptables -A INPUT -p tcp --dport 80 -m limit --limit
25/minute --limit-burst 100 -j ACCEPT

 Create a new table & chain for logging, turn it on

iptables -N LOGGING
iptables -A INPUT -j LOGGING
iptables -A LOGGING -m limit --limit 2/min -j LOG --
log-prefix "IPTables Packet Dropped: " --log-level 7

Security Managers

 Often a programming language feature
 Required for untrusted API situations

 Prevents sensitive API calls
○ e.g. System.exit(1) in Java

○ e.g. System properties (read and write)

 Highly customizable

 Turned off by default

 Many languages have them, or community provides
them
 Java: Java Security Manager

 Python: e.g. RestrictedPython

 Perl: Safe.pm

 Ruby: Safe

 C/C++: None – use OS mechanisms

http://pypi.python.org/pypi/RestrictedPython/
http://search.cpan.org/~rgarcia/perl-5.9.5/ext/Opcode/Safe.pm
http://www.ruby-doc.org/docs/ProgrammingRuby/html/taint.html

Security Managers in Practice

 In a server situation
 Limits access to underlying OS

e.g. file access, logging

 Limits OS-sensitive functions

e.g. opening a socket

 In a desktop situation
 Used to mitigate extensibility concerns

 Mitigates the “malicious plug-in” problem

 Not usually for license key situations
(user can just remove the policy)

e.g. catalina.policy

 From Apache Tomcat, Java servlet container
 A web application is untrusted code running in the same VM

 DoS & access to underlying OS are concerns too

 Server startup JAR is given full permissions

 Grant read permissions to some system-wide properties

// These permissions apply to the server startup code
grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {
 permission java.security.AllPermission;
};

// These permissions apply to the server startup code
grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {
 permission java.security.AllPermission;
};

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "java.naming.*", "read";
permission java.util.PropertyPermission "javax.sql.*", "read";

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "java.naming.*", "read";
permission java.util.PropertyPermission "javax.sql.*", "read";

e.g. catalina.policy (2)

 Grant application-specific logging file

permissions

 Grant read API permissions for web

applications for a given package

 permission java.util.logging.LoggingPermission "control";
 permission java.io.FilePermission
"${java.home}${file.separator}conf${file.separator}logging.proper
ties", "read";

 permission java.util.logging.LoggingPermission "control";
 permission java.io.FilePermission
"${java.home}${file.separator}conf${file.separator}logging.proper
ties", "read";

// All JSPs need to be able to read this package permission
java.lang.RuntimePermission "accessClassInPackage.org.apache.tomcat";
// All JSPs need to be able to read this package permission
java.lang.RuntimePermission "accessClassInPackage.org.apache.tomcat";

