Engineering Secure Software

DEPLOYMENT &
DISTRIBUTION



SE Doesn’t End at Release

Deployment counts too
Despite our best efforts to produce secure software

Vulnerabilities can exist only when deployed in a
production environment

Users expect “secure by default”

Your organization needs to be ready
Incident response plan
Version control practices

Your installation & config scripts count
Recommended firewall configuration
Security manager configuration



Recent PostgreSQL Incident

PostgreSQL reported a show-stopping vulnerability found
on Aprll 4t 2013

http://www.postgresql.org/support/security/faq/2013-04-04/

"Argument injection vulnerability in PostgreSQL [9.2.x ..]
allows remote attackers to cause a denial of service (file
corruption), and allows remote authenticated users to
modify configuration settings and execute arbitrary code,
via a connection request usmg a database name that
begins with a "-" (hyphen).”

“The vulnerability allows users to use a command-line
switch for a PostgreSQL connection intended for single-
user recovery mode while PostgreSQL is running in
normal, multiuser mode. This can be used to harm the
server.”



How PostgreSQL Responded

Embargo on the bug: March 13t — April 4

Removed the public version control repositories
during the embargo

Announced on the mailing lists to expect an
Immediate upgrade soon, without much detail

Contacted vendors especially affected (e.g.
Heroku)

Core PosgreSQL developers assisted the vendors
directly

Tested patches on vendor’s environments

Heroku already had a history of working directly with
developers on experimental features



Incident Response Plan

Incident definition
How do you know that this behavior is bad?

Use high-level risks & indicators from your initial risk
assessment

Establish who is involved
Monitoring duties
Contacts for an issue
Security response team

Chain of escalation
Know who to contact to fix the problem

Who sees the bugs
(e.g. Cisco CEO gets daily escalation reports)



Incident Response Plan (2)

Establish Procedures
Writing the patch
Testing the patch
Security expert review of a patch
Reacting to specific exploits

Establish working relationships with key
vendors

Establish criteria for notifying the world
Too late? Active exploits make you look behind

Too early?
o Unnecessary panic
o Invites exploits



Version Control Practices

Releases are treated as branches
Most current version: trunk branch
o aka upstream
o Continuously-updated to the latest version
Maintenance: release branch
o Diverges from the main truck
o New change to an old release? Backport

Upstreams and backports can differ if the code has since
changed a lot

Configuration management coordinator
Keeps track of all the branches and releases
New devs often work on backports

Keeps track of “testing gotchas™ from one release to
another (e.g. environment change, or non-change)



Upstream & Backport

® Sometimes...

* Vulnerabilities were introduced by a
backport (regression)

e Vulnerabilities only affect 1.0, not upstream

¢ Vulnerabilities affect some branches, but
not others

Upstream commit

Configuration
coordinator

Response Team

Vulnerability



Releasing Patched Versions

You will need to release patched versions of your product

“Patch it yourself” approach (e.g. Adobe Flash, Acrobat)

Software contacts the vendor periodically and downloads software

Benefit: simple, easy, you control how it works
Drawback:

o Non-root installations mean malware can spoof the update site, or
disable it

o Reverting a bad release is not usually supported

Package manager approach
(e.g. apt-get, yum, Mac App Store)
Benefits

o OS support means packages are handled all in one place

o Harder to compromise: uses hash digests to verify
Drawback: can annoy users



Firewalls

Designed to be the gatekeeper for networks
Allow|Block IP addresses & Ports
Forward traffic to different ports
Network Address Translation (NAT)

Installation scripts often need to configure the
firewalls

|PTables, the Linux firewall

Create “tables of chains of rules”

o Table: group of chains for a given action
(e.g. NAT, Filter, Routing, custom, etc.)

o Chain: an ordered group of rules
o Rule: specific definition of what’s in and what’s_out

e.g. view your Filter table:
iptables -t filter --list



e.g. IPTables Rules

Command line
-A - append to chain, -j = jump target (ACCEPT, DROP, etc.)
-s > source of the packet, -d - destination of the packet
-dport = destination port on local machine, --sport - source port
-i = input network interface (e.g. network card driver), -o = output interface
--state - packet states to match (e.g. NEW, ESTABLISHED), -p - protocol

Drop all packets coming from a specific IP address

iptables -A INPUT -s 129.21.208.62 -j DROP

Allow SSH packets in and out

iptables -A INPUT -i eth® -p tcp --dport 22 -m state --
state NEW,ESTABLISHED -j ACCEPT

iptables -A OUTPUT -o ethe -p tcp --sport 22 -m state
--state ESTABLISHED -j ACCEPI



e.g. More |IPTables rules

Forward port on IP address 192.168.102.37 from 422 to 22

iptables -t nat -A PREROUTING -p tcp -d 192.168.102.37
--dport 422 -j DNAT --to 192.168.102.37:22

DoS mitigation: When we see a burst of 100 connections/min, limit
to 25 connections/min on port 80

iptables -A INPUT -p tcp --dport 80 -m limit --limit
25/minute --limit-burst 100 -j ACCEPT

Create a new table & chain for logging, turn it on

iptables -N LOGGING

iptables -A INPUT -3j LOGGING

iptables -A LOGGING -m limit --1limit 2/min -j LOG --
log-prefix "IPTables Packet Dropped: " --log-level 7



Security Managers

Often a programming language feature
Required for untrusted API situations
Prevents sensitive API calls
o e.g. System.exit(1) in Java
o e.g. System properties (read and write)
Highly customizable
Turned off by default

Many languages have them, or community provides
them

Java: Java Security Manager
Python: e.g.

Perl:

Ruby:

C/C++: None — use OS mechanisms


http://pypi.python.org/pypi/RestrictedPython/
http://search.cpan.org/~rgarcia/perl-5.9.5/ext/Opcode/Safe.pm
http://www.ruby-doc.org/docs/ProgrammingRuby/html/taint.html

Security Managers in Practice

In a server situation
Limits access to underlying OS
e.g. file access, logging

Limits OS-sensitive functions
e.g. opening a socket

In a desktop situation

Used to mitigate extensibility concerns
Mitigates the “malicious plug-in” problem

Not usually for license key situations
(user can just remove the policy)



e.g. catalina.policy

® From Apache Tomcat, Java servlet container
* A web application is untrusted code running in the same VM
* DoS & access to underlying OS are concerns too

® Server startup JAR is given full permissions

// These permissions apply to the server startup code
grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {

permission java.security.AllPermission;

i3

® Grant read permissions to some system-wide properties

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "java.naming.*", "read";
permission java.util.PropertyPermission "javax.sql.*", "read";




e.g. catalina.policy (2)

@ Grant application-specific logging file
permissions

permission java.util.logging.lLoggingPermission "control";
permission java.io.FilePermission

"${java.home}${file.separator}conf${file.separator}logging.proper
ties", "read";

® Grant read AP| permissions for web
applications for a given package

// All JSPs need to be able to read this package permission

java.lang.RuntimePermission "accessClassInPackage.org.apache.tomcat"”;



