
Engineering Secure Software

SE Doesn’t End at Release

 Deployment counts too
 Despite our best efforts to produce secure software

 Vulnerabilities can exist only when deployed in a
production environment

 Users expect “secure by default”

 Your organization needs to be ready
 Incident response plan

 Version control practices

 Your installation & config scripts count
 Recommended firewall configuration

 Security manager configuration

Recent PostgreSQL Incident

 PostgreSQL reported a show-stopping vulnerability found
on April 4th, 2013
 http://www.postgresql.org/support/security/faq/2013-04-04/

 “Argument injection vulnerability in PostgreSQL [9.2.x ..]
allows remote attackers to cause a denial of service (file
corruption), and allows remote authenticated users to
modify configuration settings and execute arbitrary code,
via a connection request using a database name that
begins with a "-" (hyphen).”

 “The vulnerability allows users to use a command-line
switch for a PostgreSQL connection intended for single-
user recovery mode while PostgreSQL is running in
normal, multiuser mode. This can be used to harm the
server.”

How PostgreSQL Responded

 Embargo on the bug: March 13th – April 4th

 Removed the public version control repositories
during the embargo

 Announced on the mailing lists to expect an
immediate upgrade soon, without much detail

 Contacted vendors especially affected (e.g.
Heroku)
 Core PosgreSQL developers assisted the vendors

directly

 Tested patches on vendor’s environments

 Heroku already had a history of working directly with
developers on experimental features

Incident Response Plan

 Incident definition
 How do you know that this behavior is bad?

 Use high-level risks & indicators from your initial risk
assessment

 Establish who is involved
 Monitoring duties

 Contacts for an issue

 Security response team

 Chain of escalation
 Know who to contact to fix the problem

 Who sees the bugs
(e.g. Cisco CEO gets daily escalation reports)

Incident Response Plan (2)

 Establish Procedures
 Writing the patch

 Testing the patch

 Security expert review of a patch

 Reacting to specific exploits

 Establish working relationships with key
vendors

 Establish criteria for notifying the world
 Too late? Active exploits make you look behind

 Too early?
○ Unnecessary panic

○ Invites exploits

Version Control Practices

 Releases are treated as branches
 Most current version: trunk branch

○ aka upstream

○ Continuously-updated to the latest version

 Maintenance: release branch
○ Diverges from the main truck

○ New change to an old release? Backport

 Upstreams and backports can differ if the code has since
changed a lot

 Configuration management coordinator
 Keeps track of all the branches and releases

 New devs often work on backports

 Keeps track of “testing gotchas” from one release to
another (e.g. environment change, or non-change)

Upstream & Backport

Patch 1.0 Release

/branches/1.0

Upstream

/trunk

1.1

r45547

r45546

…

r45545

Vulnerability

Upstream commit

backport

Configuration

coordinator Security

Response Team

 Sometimes…
 Vulnerabilities were introduced by a

backport (regression)

 Vulnerabilities only affect 1.0, not upstream

 Vulnerabilities affect some branches, but
not others

Releasing Patched Versions

 You will need to release patched versions of your product

 “Patch it yourself” approach (e.g. Adobe Flash, Acrobat)

 Software contacts the vendor periodically and downloads software

 Benefit: simple, easy, you control how it works

 Drawback:
○ Non-root installations mean malware can spoof the update site, or

disable it

○ Reverting a bad release is not usually supported

 Package manager approach
(e.g. apt-get, yum, Mac App Store)

 Benefits
○ OS support means packages are handled all in one place

○ Harder to compromise: uses hash digests to verify

 Drawback: can annoy users
 “package X.1.2 isn’t in the system?!?!?”

Firewalls

 Designed to be the gatekeeper for networks
 Allow|Block IP addresses & Ports

 Forward traffic to different ports

 Network Address Translation (NAT)

 Installation scripts often need to configure the
firewalls

 IPTables, the Linux firewall
 Create “tables of chains of rules”

○ Table: group of chains for a given action
(e.g. NAT, Filter, Routing, custom, etc.)

○ Chain: an ordered group of rules

○ Rule: specific definition of what’s in and what’s out

 e.g. view your Filter table:
iptables -t filter --list

e.g. IPTables Rules
 Command line

 -A append to chain, -j jump target (ACCEPT, DROP, etc.)

 -s source of the packet, -d destination of the packet

 -dport destination port on local machine, --sport source port

 -i input network interface (e.g. network card driver), -o output interface

 --state packet states to match (e.g. NEW, ESTABLISHED), -p protocol

 Drop all packets coming from a specific IP address

iptables -A INPUT –s 129.21.208.62 -j DROP

 Allow SSH packets in and out

iptables -A INPUT -i eth0 -p tcp --dport 22 -m state --
state NEW,ESTABLISHED -j ACCEPT

 iptables -A OUTPUT -o eth0 -p tcp --sport 22 -m state
--state ESTABLISHED -j ACCEPT

e.g. More IPTables rules

 Forward port on IP address 192.168.102.37 from 422 to 22

iptables -t nat -A PREROUTING -p tcp -d 192.168.102.37
--dport 422 -j DNAT --to 192.168.102.37:22

 DoS mitigation: When we see a burst of 100 connections/min, limit
to 25 connections/min on port 80

iptables -A INPUT -p tcp --dport 80 -m limit --limit
25/minute --limit-burst 100 -j ACCEPT

 Create a new table & chain for logging, turn it on

iptables -N LOGGING
iptables -A INPUT -j LOGGING
iptables -A LOGGING -m limit --limit 2/min -j LOG --
log-prefix "IPTables Packet Dropped: " --log-level 7

Security Managers

 Often a programming language feature
 Required for untrusted API situations

 Prevents sensitive API calls
○ e.g. System.exit(1) in Java

○ e.g. System properties (read and write)

 Highly customizable

 Turned off by default

 Many languages have them, or community provides
them
 Java: Java Security Manager

 Python: e.g. RestrictedPython

 Perl: Safe.pm

 Ruby: Safe

 C/C++: None – use OS mechanisms

http://pypi.python.org/pypi/RestrictedPython/
http://search.cpan.org/~rgarcia/perl-5.9.5/ext/Opcode/Safe.pm
http://www.ruby-doc.org/docs/ProgrammingRuby/html/taint.html

Security Managers in Practice

 In a server situation
 Limits access to underlying OS

e.g. file access, logging

 Limits OS-sensitive functions

e.g. opening a socket

 In a desktop situation
 Used to mitigate extensibility concerns

 Mitigates the “malicious plug-in” problem

 Not usually for license key situations
(user can just remove the policy)

e.g. catalina.policy

 From Apache Tomcat, Java servlet container
 A web application is untrusted code running in the same VM

 DoS & access to underlying OS are concerns too

 Server startup JAR is given full permissions

 Grant read permissions to some system-wide properties

// These permissions apply to the server startup code
grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {
 permission java.security.AllPermission;
};

// These permissions apply to the server startup code
grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {
 permission java.security.AllPermission;
};

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "java.naming.*", "read";
permission java.util.PropertyPermission "javax.sql.*", "read";

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "java.naming.*", "read";
permission java.util.PropertyPermission "javax.sql.*", "read";

e.g. catalina.policy (2)

 Grant application-specific logging file

permissions

 Grant read API permissions for web

applications for a given package

 permission java.util.logging.LoggingPermission "control";
 permission java.io.FilePermission
"${java.home}${file.separator}conf${file.separator}logging.proper
ties", "read";

 permission java.util.logging.LoggingPermission "control";
 permission java.io.FilePermission
"${java.home}${file.separator}conf${file.separator}logging.proper
ties", "read";

// All JSPs need to be able to read this package permission
java.lang.RuntimePermission "accessClassInPackage.org.apache.tomcat";
// All JSPs need to be able to read this package permission
java.lang.RuntimePermission "accessClassInPackage.org.apache.tomcat";

