
Engineering Secure Software

The Power of Objectivity

 Black box testing
 No knowledge of the source code

 Cursory knowledge of the architecture and protocols

 Often performed by a third-party

 Why limit our own knowledge?

 Objectivity
 Different blind spots than the developers

 Assumptions are closer to attackers

 Assessment
 Persuasive to upper management and customers

 If a naïve tester can get this far, who else can get this far?

© 2011-2012 Andrew Meneely

Exploratory & Penetration Testing

 Exploratory testing
 Scope: entire attack surface

 Goals
○ Enumerate areas of attack

○ Find that low-hanging fruit

○ Mostly outer defenses

 Drawback: results not always actionable

 Penetration testing
 Scope: small area of the attack surface

 Goals:
○ Focus intently on a few features

○ Determine exploitability (construct actual exploits)

○ Evaluate defense in depth

 Drawback: proof by existence
lack of vulnerabilities found != lack of vulnerabilities

Areas of Expertise

 Know the environment
 Networking (webapps, low-level protocols)

 Operating systems (mobile, desktop, & server)

 Database management

 Know where to look
 “Where there’s smoke, there’s fire”

 Bug in security feature is often a vulnerability

 Common assumptions

 Recognize a potential vulnerability
 Vague, system error messages

 Strange behavior

 Constructing exploits

In Practice…

 Exploratory and penetration testing are done
simultaneously
 Start with exploratory testing

 Drill down with penetration testing

 When teams have security problems, they often just hire
pen-testers
 Despite this being the least efficient approach (and too late)

 Many people confuse security expertise with penetration testing
expertise

 Requires many hours of practice
 Start with known vulnerabilities

○ How could I have recognized it?

○ Try to construct an exploit for it

 Build your own tools

Exploratory: Fuzz Testing

 Goal:
 Reveal the attack surface

 Look for candidates of pen-testing

 Examine how the system reacts, without going too deep

 Simulate the user
 Reverse-engineer common behavior

○ Record a normal sequence of operations

○ Identify & modify the inputs

 Explore beyond common behavior

 Automate the process

 Output:
 Vulnerability candidates

 Automatically constructing exploits is usually too much work

Tools of Exploratory Testing

 Web applications
 HTML viewers & parsers: Firebug, developer tools

 Automate common operations: Greasemonkey

 Web client tampering tools

 Networking
 Discover local ports: netstat

 Discover remote ports: nmap

 Sniff the network: Wireshark, ngrep, tcpdump

 Operating system
 Find open file handles: lsof

 Process tree: ps

Tools of Penetration Testing

 Reverse engineering
 Disassembly & Decompilation: IDA-pro, javap,

 Debuggers: gdb

 Networking
 Proxies: for intercepting & tampering traffic

 Custom fault injectors

 Password cracking
 Online guessing

 Offline cracks

 Buckets of tools
 Metasploit: database of specific exploits

 BackTrack: Linux distribution with tons of tools

 http://sectools.org/

Before You Start

 Define what is sensitive
 Test data: e.g. config files, sensitive records

 Environment information: e.g. server versions

 Database schema

 Control the environment
 e.g. use your own server

 Be ready to try different configurations

 Use virtualization to contain your exploits

 Ask for the keys
 To study defense in depth

 e.g. multiple authorizations to a test system

 Be ready to dive in… this will take a while

Don’t Forget the Feedback!

 Transfer your knowledge back to developers
 Highlight the assumptions that they made

 Discuss what could have been done to avoid it

 Don’t just poke holes, help with the mitigation
 Egos are often bruised, at that point it’s time to help

 Fix the vulnerability, not block the exploit

 Focus on process improvement
 Checklists for future inspections

 Newly-identified assets

 Produce tests for similar features

