
Engineering Secure Software

The Power of Objectivity

 Black box testing
 No knowledge of the source code

 Cursory knowledge of the architecture and protocols

 Often performed by a third-party

 Why limit our own knowledge?

 Objectivity
 Different blind spots than the developers

 Assumptions are closer to attackers

 Assessment
 Persuasive to upper management and customers

 If a naïve tester can get this far, who else can get this far?

© 2011-2012 Andrew Meneely

Exploratory & Penetration Testing

 Exploratory testing
 Scope: entire attack surface

 Goals
○ Enumerate areas of attack

○ Find that low-hanging fruit

○ Mostly outer defenses

 Drawback: results not always actionable

 Penetration testing
 Scope: small area of the attack surface

 Goals:
○ Focus intently on a few features

○ Determine exploitability (construct actual exploits)

○ Evaluate defense in depth

 Drawback: proof by existence
lack of vulnerabilities found != lack of vulnerabilities

Areas of Expertise

 Know the environment
 Networking (webapps, low-level protocols)

 Operating systems (mobile, desktop, & server)

 Database management

 Know where to look
 “Where there’s smoke, there’s fire”

 Bug in security feature is often a vulnerability

 Common assumptions

 Recognize a potential vulnerability
 Vague, system error messages

 Strange behavior

 Constructing exploits

In Practice…

 Exploratory and penetration testing are done
simultaneously
 Start with exploratory testing

 Drill down with penetration testing

 When teams have security problems, they often just hire
pen-testers
 Despite this being the least efficient approach (and too late)

 Many people confuse security expertise with penetration testing
expertise

 Requires many hours of practice
 Start with known vulnerabilities

○ How could I have recognized it?

○ Try to construct an exploit for it

 Build your own tools

Exploratory: Fuzz Testing

 Goal:
 Reveal the attack surface

 Look for candidates of pen-testing

 Examine how the system reacts, without going too deep

 Simulate the user
 Reverse-engineer common behavior

○ Record a normal sequence of operations

○ Identify & modify the inputs

 Explore beyond common behavior

 Automate the process

 Output:
 Vulnerability candidates

 Automatically constructing exploits is usually too much work

Tools of Exploratory Testing

 Web applications
 HTML viewers & parsers: Firebug, developer tools

 Automate common operations: Greasemonkey

 Web client tampering tools

 Networking
 Discover local ports: netstat

 Discover remote ports: nmap

 Sniff the network: Wireshark, ngrep, tcpdump

 Operating system
 Find open file handles: lsof

 Process tree: ps

Tools of Penetration Testing

 Reverse engineering
 Disassembly & Decompilation: IDA-pro, javap,

 Debuggers: gdb

 Networking
 Proxies: for intercepting & tampering traffic

 Custom fault injectors

 Password cracking
 Online guessing

 Offline cracks

 Buckets of tools
 Metasploit: database of specific exploits

 BackTrack: Linux distribution with tons of tools

 http://sectools.org/

Before You Start

 Define what is sensitive
 Test data: e.g. config files, sensitive records

 Environment information: e.g. server versions

 Database schema

 Control the environment
 e.g. use your own server

 Be ready to try different configurations

 Use virtualization to contain your exploits

 Ask for the keys
 To study defense in depth

 e.g. multiple authorizations to a test system

 Be ready to dive in… this will take a while

Don’t Forget the Feedback!

 Transfer your knowledge back to developers
 Highlight the assumptions that they made

 Discuss what could have been done to avoid it

 Don’t just poke holes, help with the mitigation
 Egos are often bruised, at that point it’s time to help

 Fix the vulnerability, not block the exploit

 Focus on process improvement
 Checklists for future inspections

 Newly-identified assets

 Produce tests for similar features

