Engineering Secure Software

BLACK BOX TESTING



The Power of Objectivity

Black box testing
No knowledge of the source code
Cursory knowledge of the architecture and protocols
Often performed by a third-party

Why limit our own knowledge?

Objectivity
Different blind spots than the developers
Assumptions are closer to attackers

Assessment
Persuasive to upper management and customers
If a naive tester can get this far, who else can.get this far?



Exploratory & Penetration Testing

Exploratory testing
Scope: entire attack surface
Goals
o Enumerate areas of attack
o Find that low-hanging fruit
o Mostly outer defenses
Drawback: results not always actionable

Penetration testing
Scope: small area of the attack surface
Goals:
o Focus intently on a few features
o Determine exploitability (construct actual exploits)
o Evaluate defense in depth

Drawback: proof by existence
lack of vulnerabilities found != lack of vulnerabilities



Areas of Expertise

Know the environment
Networking (webapps, low-level protocols)
Operating systems (mobile, desktop, & server)
Database management

Know where to look
“Where there’s smoke, there’s fire”
Bug in security feature is often a vulnerability
Common assumptions

Recognize a potential vulnerability
Vague, system error messages
Strange behavior

Constructing exploits



In Practice...

Exploratory and penetration testing are done
simultaneously

Start with exploratory testing

Drill down with penetration testing

When teams have security problems, they often just hire
pen-testers
Despite this being the least efficient approach (and too late)

Many people confuse security expertise with penetration testing
expertise

Requires many hours of practice
Start with known vulnerabilities
o How could | have recognized it?
o Try to construct an exploit for it
Build your own tools



Exploratory: Fuzz Testing

Goal:
Reveal the attack surface
Look for candidates of pen-testing
Examine how the system reacts, without going too deep

Simulate the user
Reverse-engineer common behavior
o Record a normal sequence of operations
o ldentify & modify the inputs
Explore beyond common behavior

Automate the process

Output:
Vulnerability candidates
Automatically constructing exploits is usually too much werk



Tools of Exploratory Testing

Web applications
HTML viewers & parsers: Firebug, developer tools
Automate common operations: Greasemonkey
Web client tampering tools

Networking
Discover local ports: netstat
Discover remote ports: nmap
Sniff the network: Wireshark, ngrep, tcpdump

Operating system
Find open file handles: Isof
Process tree: ps



Tools of Penetration Testing

Reverse engineering
Disassembly & Decompilation: IDA-pro, javap,
Debuggers: gdb

Networking
Proxies: for intercepting & tampering traffic
Custom fault injectors

Password cracking
Online guessing
Offline cracks

Buckets of tools
Metasploit: database of specific exploits
BackTrack: Linux distribution with tons of tools
http://sectools.org/



Before You Start

Define what is sensitive
Test data: e.g. config files, sensitive records
Environment information: e.g. server versions
Database schema

Control the environment
e.g. use your own server
Be ready to try different configurations
Use virtualization to contain your exploits

Ask for the keys
To study defense in depth
e.g. multiple authorizations to a test system

Be ready to dive in... this will take a while



Don’t Forget the Feedback!

Transfer your knowledge back to developers
Highlight the assumptions that they made
Discuss what could have been done to avoid it

Don’t just poke holes, help with the mitigation
Egos are often bruised, at that point it's time to help
Fix the vulnerability, not block the exploit

Focus on process improvement
Checklists for future inspections
Newly-identified assets
Produce tests for similar features



