
4/11/2011

1

4010-350
Personal Software Engineering

Introduction to Ruby

A Bit of History

 Yukihiro "Matz'' Matsumoto

– Created a language he liked to work in.

– Been around since mid-90s.

– Caught on in early to mid 00s.

 Lineage

– Smalltalk – dynamic, OO-centric

– CLU – yield to blocks

– Pascal – basic concrete syntax

– AWK / Python / Perl – scripting & regular expressions

– Matz's own predilections

4/11/2011

2

Ruby Characteristics

 Everything is an object – everything.

– 3.times { puts "hello" }

– "Mike is smart".sub(/Mike/, "Pete")

– str = str[0..9] unless str.length < 10

 Every statement is an expression:

– Generally the last value computed.

– No need for return – but it's there anyway.

 Rich built in data types:
String
Array
Hash
RegExp

Range
Unbounded numbers (factorial)
Blocks & procs
Anonymous functions

Exploring Ruby

 ri – Ruby information

 irb – Interactive Ruby

 Script files: filename.rb

4/11/2011

3

Ruby Control Structures: Selection

if condition

statements

elsif condition

statements

else

statements

end

unless condition

statements

end

Conditions in Ruby
Comparisons, etc., return a boolean:

true (the only member of TrueClass)

false (the only member of FalseClass)

Evaluating conditions
false evaluates to false.

nil evaluates to false.

Everything else is true (including 0).

Statement Modifiers (a la Perl)

statement if condition

statement unless condition

Ruby Control Structures: Loops

while condition

statements

end

until condition

statements

end

Early Termination

next

break

redo

begin

statements

end while condition

begin

statements

end until condition

We don't need
no stinkin'

loops!

4/11/2011

4

Iterators

 Explict loops are rare in Ruby

 Instead, we usually use iterators

– Iterators are defined on collection classes

– "Push" elements into a block one at a time.

– The basic iterator is each.

– Show with arrays (the simplest collection)

fibo = [1, 2, 3, 5, 8]

fibo.each { | value | puts "The next value is #{value }" }

fibo.each_index { | i | puts "fibo[#{i}] = #{fibo[i]}" }

fibo.select { | value | value % 2 == 1 }

fibo.inject(0) { | sum, value | sum += value }

puts "Total = #{fibo.inject(0) { | s, v | s += v }}"

But, For Completeness

 loop

loop { puts "forever" }

loop do

line = gets

break if ! line

puts line

end

 for statement

for v in
collection

statements
end

collection.each do |
v |

statements
end

4/11/2011

5

Strings

 Literals

"abcdef" vs. 'abcdef' %q{xyz#{1}}

"abc #{3 % 2 == 1} def" %Q{xyz#{1}}

 Operators

+ and += s1 = "a" + "b" ; s1 += "c"

* "oops! " * 3

[] should be obvious, but "abcd"[1..2]

== < <=> comparisons

=~ and !~ r.e. match (and not match)

 Some of the methods (many have ! variants)

capitalize sub(r.e, str)

downcase include?(str)

upcase index(str or r.e.)

Arrays

 Literals

a = [1, "foo", [6, 7, 8], 9.87]

b = %w{ now is the time for all good men }

 Operators

& (intersection) + (catenation) - (difference)

* int (repetition) * str (join w/str as separator)

[] []= as expected for simple indices

<< obj (push on end)

 Some of the methods

[1, "hello", 3].collect { |v| v * 2 } # alias map

[1, 2, 5].include?(2)

[1, 2, 5].first [1, 2, 5].last

[1, 2, 5].length [1, 2, 5].empty?

4/11/2011

6

Hashes

 Literals

{ "door" => "puerta", "pencil" => lapiz }

new Hash(default)

 Operators

h[key] h[key] = value

 Some methods

each each_key each_value

empty? has_key? has_value? size

keys (returns array) values (returns array)

sort (returns an array of 2-element arrays)

sort { |p1, p2| expression returning -1, 0, +1 }

I/O

 Class File

f = File.new(name, mode)

 name is a string giving the file name (host dependent).

 mode is an access string: "r", "rw", "w", "w+"

f.close

f.puts, f.printf, f.gets, etc.

 puts, printf are implicitly prefixed by $stdout.

 gets is implicitly prefixed by $stdin

File.open(name, mode) block – open the file name, call block with
the open file, close file when block exits.

 Class Dir

d = Dir.new(name) – open named directory.

d.close

Dir.foreach(name) block – pass each file name to block.

4/11/2011

7

RegExps

 Literals

/regular expression/

%r{regular expression}

 Some examples

"xxAAyyBBzz".gsub(/A+[^B]*B+/,'\&<->\&')

"xxAAyyBBzz".gsub(/(A+)([^B]*)(B+)/,'\3\2\1')

"xx(AA)Azz".gsub(/\(A+\)/,'###')

Miscellaneous (1)

 Functions

– call: puts "abc" or puts("abc")

– define:

def putNtimes(string, count)

puts string * count

end

 Requiring modules

require string

 Looks for string.rb and imports whatever is in there.

 Typically service functions, classes, etc.

 Looks in "standard" locations as well as current directory.

Example: require 'pp'

 Makes a function pp available.

 Similar to puts, but presents structures in a nested, easier to read format.

4/11/2011

8

Miscellaneous

 Symbols

– :foobar, :myname

– like a string but unique, immutable, and fast

– Often used as hash keys, identifiers, etc.

 Duck typing: "If it looks like a duck . . ."

def putlengths anArray

anArray.each { |x| puts x.length }

end

putlengths [[1, 2, 3], "abcde", {"a" => "b", "c" => "d"}]

ON TO THE ACTIVITY

