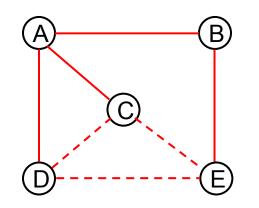
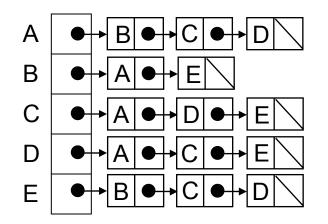

Adjacency Lists


- Adjacency Lists
 - Adjacency list of a vertex v = sequence of vertices adjacent to v
 - Represent the graph by the adjacency lists of all the vertices



Breadth First Search (BFS)

mark all vertices as not visited. s = starting vertexput s in the queue while the queue is not empty { current node = dequeue() for each neighbor of the current node { if the neighbor is not marked { visit and mark neighbor enqueue the neighbor display current node, neighbor }

	mark all vertices in the graph as not visited	
	mark and visit s	
	Put s in the queue	
While the queue is not empty		
	remove the front element from the queue and call it the current vertex.	
	for each neighbor of the current vertex	
	the neighbor is not marked	
	yes	
	visit and mark the neighbor	
	put neighbor in the queue	

BFS Example (using adjacency list)

all vertices marked not visited start vertex = Aenqueue(A) onto queue Q $Q = \{A\}$ current vertex = dequeue() \rightarrow A for each neighbor of A{ is B marked? No - mark B, enqueue(B), display A,B is C marked ? No - mark C, enqueue(C), display A,C is D marked? No - mark D, enqueue(D), display A,D } $Q = \{ B, C, D \}$ current vertex = dequeue() \rightarrow B for each neighbor of B{ is A marked? Yes is E marked ? No - mark E, enqueue(E), display B,E $Q = \{ C, D, E \}$ current vertex = dequeue() \rightarrow C for each neighbor of C \rightarrow A,D,E all marked $Q = \{ D, E \}$ current vertex = dequeue() -> D for each neighbor of D \rightarrow A,C,E all marked $Q = \{E\}$ current vertex = dequeue() \rightarrow E for each neighbor of $E \rightarrow B,C,D$ all marked $Q = \{empty\}$

done.