
40104010--350350 Personal SEPersonal SE

Computer MemoryComputer Memory

AddressesAddresses

C PointersC Pointers

Computer Memory Organization

� Memory is a bucket of bytes.

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

– Question: How many distinct values can a byte of data hold?

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

– Question: How many distinct values can a byte of data hold?

– Bytes can be combined into larger units:

� Half-words (shorts) 16 bits 65,536 combinations

� Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

� Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

– Question: How many distinct values can a byte of data hold?

– Bytes can be combined into larger units:

� Half-words (shorts) 16 bits 65,536 combinations

� Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

� Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

� The bucket is actually an array of bytes:

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

– Question: How many distinct values can a byte of data hold?

– Bytes can be combined into larger units:

� Half-words (shorts) 16 bits 65,536 combinations

� Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

� Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

� The bucket is actually an array of bytes:

– Think of it as an array named memory.

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

– Question: How many distinct values can a byte of data hold?

– Bytes can be combined into larger units:

� Half-words (shorts) 16 bits 65,536 combinations

� Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

� Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

� The bucket is actually an array of bytes:

– Think of it as an array named memory.

– Then memory[a] is the byte at index / location / address a.

Computer Memory Organization

� Memory is a bucket of bytes.

– Each byte is 8 bits wide.

– Question: How many distinct values can a byte of data hold?

– Bytes can be combined into larger units:

� Half-words (shorts) 16 bits 65,536 combinations

� Words (ints) 32 bits ≈ 4 × 109 ≈ 4 billion

� Double words (long) 64 bits ≈ 16 × 1018 ≈ 16 quadrillion

� The bucket is actually an array of bytes:

– Think of it as an array named memory.

– Then memory[a] is the byte at index / location / address a.

– Normally the addresses run from 0 to some maximum.

Pictorially … N byte Memory

N - 10

N - 1

0

Either way (horizontal or vertical) is fine.

The key is that memory is logically an array

What's In a Number?

� What does the hexadecimal number 0x4A6F65 mean?

What's In a Number?

� What does the hexadecimal number 0x4A6F65 mean?

� Possibilities:

– It could be the decimal number 4,878,181

– It could be the string "Joe"
'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65

– It could be the address of the 4,878,181st byte in memory

– It could be an instruction to, say, increment (op code = 0x4A)
a location (address = 0x6F65) by 1

What's In a Number?

� What does the hexadecimal number 0x4A6F65 mean?

� Possibilities:

– It could be the decimal number 4,878,181

– It could be the string "Joe"
'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65

– It could be the address of the 4,878,181st byte in memory

– It could be an instruction to, say, increment (op code = 0x4A)
a location (address = 0x6F65) by 1

� How do we know??????

What's In a Number?

� What does the hexadecimal number 0x4A6F65 mean?

� Possibilities:

– It could be the decimal number 4,878,181

– It could be the string "Joe"
'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65

– It could be the address of the 4,878,181st byte in memory

– It could be an instruction to, say, increment (op code = 0x4A)
a location (address = 0x6F65) by 1

� How do we know??????

� We don't until we use it!

What's In a Number?

� What does the hexadecimal number 0x4A6F65 mean?

� Possibilities:

– It could be the decimal number 4,878,181

– It could be the string "Joe"
'J' = 0x4A, 'o' = 0x6F, 'e' = 0x65

– It could be the address of the 4,878,181st byte in memory

– It could be an instruction to, say, increment (op code = 0x4A)
a location (address = 0x6F65) by 1

� How do we know??????

� We don't until we use it!

– If we send it to a printer, it's a string.

– If we use it to access memory, it's an address.

– If we fetch it as an instruction, it's an instruction.

Computer Numbers as Shape-Shifters

� The ability of numbers to "morph" their meaning is very
powerful.

– We can manipulate characters like numbers.

– We can change instructions on the fly.

– We can perform computation on addresses.

Danger Will Robinson! Danger!

� The ability of numbers to "morph" their meaning is very
powerful.

– We can manipulate characters like numbers.

– We can change instructions on the fly.

– We can perform computation on addresses.

� BUT: What if we use a number other than intended:

– We get run-time errors (using an integer as an address).

– We get hard-to-fix bugs (executing data as instructions).

– We get weird printout (sending addresses to a printer).

Spiderman Is A "C" Programmer

� The ability of numbers to "morph" their meaning is very
powerful.

– We can manipulate characters like numbers.

– We can change instructions on the fly.

– We can perform computation on addresses.

� BUT: What if we use a number other than intended:

– We get run-time errors (using an integer as an address).

– We get hard-to-fix bugs (executing data as instructions).

– We get weird printout (sending addresses to a printer).

With great power

comes great responsibility.

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

"*" says that ip is a
pointer, not an integer

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

The "*" is attached to
the variable, not the
type

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

int i, *ip ;

Equivalent to these two
declarations

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

� On most systems, both allocate 32 bits for i and ip.

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

� On most systems, both allocate 32 bits for i and ip.

� The difference?

– i's contents are treated as an integer – just a number.

– ip's contents are treated as an address (where an integer can
be found).

Pointers in C

� Consider the following two declarations:
int i ;

int *ip ;

� On most systems, both allocate 32 bits for i and ip.

� The difference?

– i's contents are treated as an integer.

� All we can manipulate is the integer value in i.

– ip's contents are treated as an address (where an integer can
be found).

� We can manipulate the address (make it point elsewhere).

� We can manipulate the integer at the current address.

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

NAME ADDR VALUE

xxxx 108108108108 3.141593.141593.141593.14159

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124124124124 ????????????????????????????

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

NAME ADDR VALUE

xxxx 108108108108 3.141593.141593.141593.14159

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124124124124 ????????????????????????????

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

NAME ADDR VALUE

xxxx 108108108108 3.141593.141593.141593.14159

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124124124124 ????????????????????????????

& = "address of"
The address of a variable is a
pointer to the variable's type

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

NAME ADDR VALUE

xxxx 108108108108 3.141593.141593.141593.14159

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 108108108108

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ;

NAME ADDR VALUE

xxxx 108108108108 3.14159

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 108108108108

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ;

NAME ADDR VALUE

xxxx 108108108108 3.14159

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 108108108108

* = "dereference"
The value the pointer addresses,

not the pointer itself

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

NAME ADDR VALUE

xxxx 108108108108 6.283186.283186.283186.28318

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 108108108108

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

NAME ADDR VALUE

xxxx 108108108108 6.283186.283186.283186.28318

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 108108108108

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

NAME ADDR VALUE

xxxx 108108108108 6.283186.283186.283186.28318

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 116116116116

A Short Example

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

*dp += x ;

NAME ADDR VALUE

xxxx 108108108108 6.283186.283186.283186.28318

yyyy 116116116116 2.718282.718282.718282.71828

dpdpdpdp 124 116116116116

A Short Example – The Effect

double x = 3.14159 ;

double y = 2.71828 ;

double *dp ;

dp = &x ;

x = *dp * 2.0 ; // same as x = x * 2.0

dp = &y ;

*dp += x ;

NAME ADDR VALUE

xxxx 108108108108 6.283186.283186.283186.28318

yyyy 116116116116 9.001469.001469.001469.00146

dpdpdpdp 124 116116116116

Pointers – Reference Parameters

Pointers – Reference Parameters

// Swap // Swap // Swap // Swap –––– the wrong waythe wrong waythe wrong waythe wrong way

void swap(void swap(void swap(void swap(grade_entrygrade_entrygrade_entrygrade_entry x, x, x, x, grade_entrygrade_entrygrade_entrygrade_entry y) {y) {y) {y) {

grade_entrygrade_entrygrade_entrygrade_entry temp ;temp ;temp ;temp ;

temp = x ; x = y ; y = temp ;temp = x ; x = y ; y = temp ;temp = x ; x = y ; y = temp ;temp = x ; x = y ; y = temp ;

return ;return ;return ;return ;

}}}}

Pointers – Reference Parameters

// Swap // Swap // Swap // Swap –––– the wrong waythe wrong waythe wrong waythe wrong way

void swap(void swap(void swap(void swap(grade_entrygrade_entrygrade_entrygrade_entry x, x, x, x, grade_entrygrade_entrygrade_entrygrade_entry y) {y) {y) {y) {

grade_entrygrade_entrygrade_entrygrade_entry temp ;temp ;temp ;temp ;

temp = x ; x = y ; y = temp ;temp = x ; x = y ; y = temp ;temp = x ; x = y ; y = temp ;temp = x ; x = y ; y = temp ;

return ;return ;return ;return ;

}}}}

// Swap // Swap // Swap // Swap –––– the right waythe right waythe right waythe right way

void swap(void swap(void swap(void swap(grade_entrygrade_entrygrade_entrygrade_entry *x, *x, *x, *x, grade_entrygrade_entrygrade_entrygrade_entry *y) {*y) {*y) {*y) {

grade_entrygrade_entrygrade_entrygrade_entry temp ;temp ;temp ;temp ;

temp = *x ; *x = *y ; *y = temp ;temp = *x ; *x = *y ; *y = temp ;temp = *x ; *x = *y ; *y = temp ;temp = *x ; *x = *y ; *y = temp ;

return ;return ;return ;return ;

}}}}

Pointers – Call by Reference

Pointers – Call by Reference

// Array element exchange the wrong way

swap(grade_list[i], grade_list[j]) ;

Pointers – Call by Reference

// Array element exchange the wrong way// Array element exchange the wrong way// Array element exchange the wrong way// Array element exchange the wrong way

swap(swap(swap(swap(grade_listgrade_listgrade_listgrade_list[i], [i], [i], [i], grade_listgrade_listgrade_listgrade_list[j]) ;[j]) ;[j]) ;[j]) ;

// Array element exchange the right way// Array element exchange the right way// Array element exchange the right way// Array element exchange the right way

swap(&swap(&swap(&swap(&grade_listgrade_listgrade_listgrade_list[i], &[i], &[i], &[i], &grade_listgrade_listgrade_listgrade_list[j]) ;[j]) ;[j]) ;[j]) ;

