Learning C from Java™

Java is a soft cushion at the bottom of the sea;
Cisastony floor at the bottom of a cliff.

Differences

Thisisalist of differences between Java and C, and assumes that the reader knows less
about the latter. It's worth familiarising yourself with all the points, even if you don't fully
understand them, then you may be aware of the cause of any problem you might
encounter.

Many features of C, particularly its standard library facilities, are not dealt with in any
great depth, since you can look those up in help files or manual pages, or a good
reference book.

Speed of execution vs portability

Java source and binaries are entirely portable (subject to availability of appropriate
libraries), since the source format is standardized, and the binaries run on a software
emulation of a standardized processor, which also slows execution. In C, binaries
are not usually portable from one platform to another, because they use the
platform'’s native hardware processor directly, and so run faster, but C source can be
portable with little modification if it adheresto the 1SO C standard

(ISONMEC 9899:1990, or C90), again subject to the available libraries, while
avoiding or accounting for aspects of the standard which are implementation-
defined.

There is now a new standard (I1SO/IEC 9899:1999, or C99) adding some new
features. These are pointed out where appropriate.

Speed of execution vs speed/ease of development

Java may initially be seen as a slow language, since it is compiled from source into a
bytecode, alow-level machine code for a non-existent processor, which then has to
be interpreted by a software emulation of that processor. All of this takes time, but
thisis less significant in modern VM implementations, which are able to compile
some or al of the program's bytecode into native code a execution time (Just In
Time, JIT). For long running programs (e.g. GUI-based applications, servers), this
initial cost of translation is amortized by the speed improvement achieved

* From Steven Simpson’s web site: http://www.comp.lancs.ac.uk/~ss/java2c/

http://www.comp.lancs.ac.uk/~ss/java2c/

subsequently. For short-lived programs, like shell commands, this advantage cannot
be taken.

Java programs may be easier to develop since:

- dynamic memory management is handled largely automatically, and
- diagnostic exceptions are thrown for illegal operations (such as accessing
through a null reference, or accessing beyond the bounds of an array).

Notwithstanding effective J'T optimization, C programs will usually run faster,
however, since:

- dynamic memory management (which is often not required) is fully under the
programmer's control, and

- there are no checks for illegal operations (but a well-written program won't
attempt them anyway),

... although these require greater responsibility from the programmer.
Primitive types

In C, the primitive types are referred to using a combination of the keywords char ,
int,float, doubl e, si gned, unsi gned, | ong, short and voi d. The allowable
combinations are listed below, but their meanings depend on the compiler and
platform in use, unlike Java

unsi gned char
The narrowest unsigned integral type, typically (and always at least) 8 bits wide.
si gned char

The narrowest signed integral type, of the same width asunsi gned char.

char

Anintegral type equivalent to one or other of the signed/unsigned variants, but its
signedness is implementation-dependent. C treatsit as a distinct type, though.

unsi gned short int
unsi gned short

An unsigned integral type at least aswide asunsi gned char , typically (and
always at least) 16 bits. Thei nt isusually omitted.

si gned short int
si gned short

short int
short

A signed integral type of the same width asunsi gned short int. Thisisoften
just called short.

unsi gned i nt
unsi gned

Anunsigned integral type at least aswide asunsi gned short, and wider than the
char types. 16- or 32-bit widths are common.

signed i nt
si gned
i nt

A signed integral type of the same size asunsi gned i nt . Thisis often just called
i nt.

unsi gned |l ong i nt
unsi gned | ong

Anunsigned integral type at least aswide asunsi gned i nt, typically (and
always at least) 32 bits. Thei nt is often omitted.

signed | ong i nt
si gned | ong

[ong i nt

| ong

A signed integral type of the same size asunsi gned 1 ong i nt. Thisis often just
called | ong.

unsi gned |l ong | ong i nt
unsi gned | ong | ong

In C99, an unsigned integral type at least aswide asunsi gned | ong, typically
(and always at least) 64 bits. Thei nt is often omitted.

signed !l onglongint
signed | ong | ong

| ong | ong i nt

| ong | ong

In C99, asigned integral type of the same size as unsi gned 1 ong | ong int.
Thisisoften just called | ong | ong.

fl oat

A single precision floating-point type.
doubl e
A double precision floating-point type.

| ong doubl e

An extended double precision floating-point type.
voi d

An empty type. It has no value, and cannot be accessed. Asin Java, C functions
with no return value are defined to return voi d. Unlike Java, a function with no
parameters hasvoi d in its parameter list.

Note that there is no boolean type. Instead, the test conditions of i f, whi | e and f or
statements, and the operands of the logical operators (!, & and | |), are integer
expressions with a boolean interpretation: zero means false, non-zero means true.
The relational operators (==, ! =, <=, >=, < and >) and logical operatorsreturn o for
false and 1 for true.

In C99, there is aboolean type bool (whichisreally just avery small integer type)
and symbolic valuest rue and f al se (i.e. just 1 and 0), but the other integer types
work just as well as before.

Comments

Java allows the use of these forms of comment:

/[* a multiline
coment */
/1 a single |line coment

C only allows the former. It is not wise to use such commentsto temporarily disable
sections of code, since they do not nest. Use the preprocessor (see later) instead:

/* enabl ed code */
#if O

/* di sabl ed code */
#endi f

/* enabl ed code */

In C99, the one-line comment is allowed.

Structures instead of classes

C does not allow you to declare class types (as you can in Java using the cl ass
construct), but you can declare C structures using the st r uct construct. A C
structureis like a Java class that only contains public data members — there must be
no functions, and all parts are visible to any code that knows the declaration. For
example:

struct point {
int x, vy;

H

Thisdeclares atype called st ruct poi nt (NB: ‘struct’ ispart of the name; poi nt
is known as the structure type's tag).

Members of a C structure are accessed using the . operator, as class members can be
in Java:

struct point |ocation

| ocation. x
| ocation.y

10;
13;

A structure object may be initialised where it is defined:

struct point location = { 10, 13 }; /* okay; initialisation (part
of definition) */

location = { 4, 5}; /* illegal; assignnent (not part of
definition) */

In C99, you can create anonymous structure objects to perform compound
assignement:

location = (struct point) { 4, 5}; /* legal in C99 */

In C99, a gructure initialisation can specify which members are being set:

struct point location ={ .y =13, .x =10 }; /* legal in C99 */

Unlike Java, where class variables are references to objects, C structure variables are
the objects themselves. Assigning one to another causes copying of the members:

struct point a ={ 1, 2 };
struct point b;

a; /* copies a.x to b.x, and a.y to b.y */

b =
b. x 10; /* does not affect a.x */

Enumerations

An enumeration defines several symbolic integer constants with unique valuesin a
convenient way. The following declares a new type enum | i ght , and defines the
symbols RED for 0, REDAMBER for 1, GREEN for 2, and AVBER for 3:

enum | i ght { RED, REDAMBER, GREEN, AMBER };

The first symbol is assigned the value 0, and each subsequent symbol is assigned the
next integer. However, a symbol can be assigned a particular value:

enum light { RED = 3, REDAMBER GREEN = 1, AMBER };

This also implies that REDAMBER is 4, and that AVBER S 2.

If anew type is not required, the tag can be omitted:

enum { RED, REDAMBER, GREEN, AMBER };

The symbols can be used in any expression, and may be assigned to any integral
type, not just the enumtype. For this reason, the tag is rarely used.

Symbolic constants in Java usually have this form:

public static final int RED = 0;
public static final int REDAMBER = 1;
public static final int GREEN = 2;
public static final int AMBER = 3;

However, Java 1.5 has introduced a new enumfamily of classes, which achieves the
above with greater type-safety, and a few other nice facilities:

public enum Light State { RED, REDAMBER, GREEN, AMBER }

Unions

C allows an area of memory to be occupied by data of several types, though only
one at atime, using a union. Unions are syntactically similar to structures:

uni on nunber {
char c;
int i;
float f;

\ doubl e d;

This declares atype called uni on nunber (NB: ‘uni on’ is part of the name; nunber
is known as the union's tag).

Members of a C union are accessed using the . operator, just as structure members
are accessed:

uni on nunber n;
int j;

n. i
J =]

S

Only the member to which avalue was last assigned contains valid information to be
read. There is no way to determine that member implicitly, so the programmer must
take stepsto identify it, for example, by using a separate variable to indicate the
type:

uni on nunber n;
enum { CHAR, | NT, FLOAT, DOUBLE } nt;

n.i = 10;
nt = | NT;

switch (nt) {
case CHAR
/* access n.c */
br eak;
case | NT:
/* access n.i */
br eak;
case FLOAT:
/* access n.f */
br eak;
case DOUBLE:
/* access n.d */
br eak;

Java does not have unions, although it is possible for areference to refer to any class
derived fromits own. A reference of typej ava. | ang. Obj ect can refer to any class
of object, since all classes are originally derived fromj ava. | ang. Qoj ect .

Single namespace for functions and global variables

Each class in Java defines a namespace which allows functions and variablesin
separate, unrelated classes to share the same name. When identifying a function or
variable in Java, the namespace must be expressed, or implied using ani nport
directive; for example, the method j ava. | ang. I nt eger. t oSt ri ng() isdistinct
fromj ava. | ang. Long. t oSt ri ng() . Java packages allow distinct classes and
interfaces to share the same name; for example, the name Cbj ect could refer to
either j ava. | ang. Qbj ect Or or g. onmg. CORBA. (bj ect .

In C, al functions are global, and must share a single namespace (i.e. one per
program). Global variables can also be declared and defined, and they also share that
namespace. Care must be taken in choosing names for functions in large projects,
and often a strategy of using a common prefix for groups of related functions is
employed, e.g. WA prefixes most of the WinSock functions.

Note that other namespaces exist in C: a single namespace is shared by the tags of
all structures, unions and enumerations; each structure and union holds a unique
namespace for its members; each block statement holds a namespace for local
variables.

Lack of function name overloading
In Java, two functions in the same namespace may share the same name if their

parameter types are sufficiently different. In C, thisis simply not the case, and all
function names must be unique.

voi d nyfunc(int a)

{
1% 0 %]

}

void nyfunc(float b) /* error: nyfunc already defined */

1% 0 %]
}

Type aliasing

New names or aliases for existing types may be created using t ypedef . For
example:

typedef int int32_t;

Thisallowsi nt 32_t to be used anywhere in place of i nt , and such aliases are often
used to hide implementation- or platform-specific details, or to allow the choice of a
widely-used type to be changed easily.

t ypedef are aso useful for expressing complex compound types. For example, a
prototype for the standard-library function si gnal has the following, rather cryptic
form (in 1SO C):

void (*signal (int signum void (*handler)(int)))(int);

Erm, what? It becomes a little clearer when POSIX (an Operating System standard
which incorporates the C standard) declaresiit:

typedef void (*sighandler_t)(int);
si ghandl er _t signal (int signum sighandler_t handler);

Now we can see that the function's second argument has the same type as itsreturn
value, and that that type is, in fact, a pointer-to-function type.

Notethat at ypedef issyntactically similar to a variable declaration, with the new
type name appearing in the place of the variable name.

There is no equivalent of type aliasing in Java.

Declarations and definitions

C programs are built from collections of functions (which have behaviour) and
objects (which have values; variables are objects), the natures of which are indicated
by their types. C compilers read through source files sequentially, looking for names
of types, objects and functions being referred to by other types, objects and
functions,

A declaration of atype, object or function tells the compiler that a name exists and
how it may be used, and so may be referred to later in the file. If the compiler
encounters a name that does not have a preceding declaration, it may generate an
error or awarning because it does not understand how the name is to be used.

In contrast, a Java compiler can look forward or back, or even into other source files,
to find definitions for referenced names.

A definition of an object or function tells the compiler which module the object or
function isin (see “Program modularity”). For an object, the definition may also
indicate itsinitial value. For afunction, the definition gives the function's behaviour.

Functions and their prototypes

In Java, the use of a function may appear earlier than its definition. In C, al
functions being used in a source file should be declared somewhere earlier than their
invocations in that file, allowing the compiler to check if the arguments match the
function's formal parameters. A function declaration (or prototype) looks like a
function definition, but its body (the code between and including the braces (*{’ and
‘}") isreplaced by a semicolon (similar to anat i ve method, or an interface method,
in Java). If the compiler finds a function invocation before any declaration, it will try
to infer a declaration from the invocation, and this may not match the true definition.
A proper declaration can be inferred from a function definition, should that be
encountered first.

/* a declaration; paranmeter names nmay be omitted */
i nt power(int base, int exponent);

/* Fromhere until the end of the file, we can make calls to
power (),
even though the definition hasn't been encountered. */

/* a definition; paraneter nanes do not need to match decl aration */
int power(int b, int e)

{
int r =1,
while (e-- > 0)
r *=b;
return r;
}

Global objects

Global objects also have distinct declarative and definitive forms. A definition may
be accompanied by an initialiser, e.g.

int globval = 34; /* initialised */
i nt anot her; /* uninitialised */

while a declaration should not have an initialiser, and should be preceded by
extern.

10

extern int globval;
extern int another;

(ext er n can also appear before afunction declaration, but it is optional.)
Local objects
For local objects in C, the definition and declaration are not distinguished. Unlike

Java, all local variables must be defined at the beginning of their enclosing block,
before any statements are reached. Thisrestriction does not apply in C99.

{

int x; /* adefinition */
x = 10; /* a statenent */

int y; /* illegal; follows a statenent */

}

Furthermore, an iteration variable in af or loop cannot be declared within the
initialisation of the statement:

{
for (int x = 0; x < 10; x++) { /* illegal */
[* .00
}

}

Thisrestriction doesnot apply in C99.
Scope

All declarations have scope, which is the part of the program in which the declared
name is valid. ‘File scope’ means from the declaration to the end of the file, and
appliesto types, functions and global objects.

‘Block scope’ means from the declaration to the end of the block statement in which
it isdeclared. This aways applies to local objects (and formal parameters), but can
also apply to types, functions and global objects. All of the following declarations
have block scope, and can be used by the trailing statements, but not beyond:

{

/* a local type */
typedef int Ml nteger

/* a local variable */

11

M/l nt eger x;

/* gl obal variable */
extern int vy;

/* function (extern is inmplicit) */
i nt power(int base, int exponent);

/* statenents... */

Unlike Java, alocal variable in an inner block may hide one in an outer block by
having the same name:

t
int x;
{
int x; /* hides the other */
}
/* first one visible again */
}

Empty parameter lists

In Java, afunction that takes no parametersisexpressed using () . InC, sucha
function should be expressed with (voi d) in its declaration and definition.
However, it is still invoked with () :

/* prototypel/declaration */
i nt nmyfunc(void);

/* definition */
i nt nmyfunc(void)
{

[* .00
}

/* invocation */
nmyfunc() ;

Theform () ispermitted in declarations, but it means "unspecified arguments’
rather than "no arguments'. Thistells the compiler to abandon type-checking of
arguments where that function is invoked, and is not recommended.

12

Program modularity

Java programs, particularly large ones, are usually built in a modular fashion that
supports code re-use. The source code is spread over several sourcefiles(. j ava),
and is used to generate Java byte-code in class files (. ¢l ass) which are identified
by the class they support, so in Java, thereisa direct relationship between the
name of a class and thefile containing the code for that class. These are
combined at run-time to produce the executing program. Java's standard library of
utilities for file access, GUI s, internationalisation, etc., is a practical example of
modular coding.

A large C program may also be split into several source files (usually witha. c
extension), and compilation of each of these produces an object file of (usually) the
same name with a different extension (. o or . obj). These are the modules of C
that can be combined to form an executable program. An object file contains named
representations of the functions and global data defined in its source file, and allows
them to refer to other functions and data by name, even if in a separate module. In
C, theredoesn't haveto be any relationship between the names of functionsand
variables and the names of the modules that contain them.

A final executable program is produced by supplying all the relevant modules (as
object files) to alinker (which is often built into the compiler). This attempts to
resolve all the referred names into the memory addresses required by the generated
machine code, and linking will fail if some names cannot beresolved, or if there
aretwo representations of the same name.

For example, the object file generated from the code below would contain references
to the names pow (because it is invoked as afunction) and er r no (because it is
accessed as aglobal variable), and would also provide arepresentation of the name

f unc (because a definition of the function is provided).

extern int errno;

voi d func(voi d)

{
doubl e pow(doubl e, doubl e);
double x = 3.0, y = 12.7, r;
int e;

r
e

pow(X, Y);
errno,

[* o0 %

Like Java, C comes with a standard library of general-purpose support routines, an
implementation of which is supplied with your compiler. Its source code is not

13

usually required, since it has already been compiled into object files for your system,

and these will be used automatically when linking.

Other pre-compiled libraries may also exist (e.g. to support sockets), but it will
normally be necessary to link with them explicitly to use them.

Hereisan illustration of a program built from several components:

your files additional libraries
% k)
"yan.h" <wibble.h> \
- -
> '3
- [] -
o -~
* u ' *
: 4 ' AC <wobble.h>
I. . - - -
]] - ‘ - -
"tﬂr‘l.h" "tithEr. hu i, L . -
. A - "‘l - -
L L - L] -
’l w . ”, # ‘.) - * ' . - -
foo.c bar.c baz.c quux.c

compile
compile
compile

ol
N BB |

foo.o bar.o baz.o quux.o libwubble.a

‘ link

M—
compile

myprog

The source code consists of 4 sourcefiles (f oo. ¢, bar. ¢, baz. c, quux. ¢) and
3 header files for preprocessing ("yan. h","tan. h","ti ther. h"; see"File
inclusion™). The program also uses some header files (<wi bbl e. h>,

14

<wobbl e. h>) from an additional library. Compiling each of the source filesin
turn generates the object filesf 0o. o, bar . 0, baz. o, quux. o, and these are
linked with an archive of pre-compiled objects (I i bwubbl e. a) fromthe library to
produce an executable program ny pr og.

Preprocessing

Each C source file undergoes alexical preprocessing stage which serves several
purposes, including conditional compilation and macro expansion. The main
purpose isto alow common declarations of types, global data and functionsto be
conveniently and consistently made available to modules which need to access them.
In general, the preprocessor is able to insert, remove or replace text from the source
code asit is supplied to the compiler (the original source code doesn't change).

There is no equivalent of preprocessing in Java, but the following purposes don't
usually apply to it anyway.

File inclusion

When a large C program is split over several modules, code in one module may need
to make references to named code in another, or may use types that the other module
uses. The usual way to achieve thisisto precede the reference with a declaration that
shows what the name means. Some example declarations:

/* this declares the type struct point */
struct point {
int x, vy;

H

/* this declares the gl obal variable errno */
extern int errno;

/* this declares the function getchar */
i nt getchar(void);

It would be tedious to repeat such declarations in each source file that requires them
(particularly if they need to be modified as the program develops), but these could
instead be placed in a separate file (usually with a. h extension), and inserted
automatically by the preprocessor when it encounters an #i ncl ude directive
embedded in the source code, for example:

#i ncl ude "nydecl s. h"

These header files are also preprocessed, and so may contain further #i ncl ude (or
other) directives.

15

Header files containing declarations for the standard library are also available to the
preprocessor. These are normally accessed with a variant of the #i ncl ude directive:

/* include declarations for input/output routines */
#i ncl ude <stdio. h>

Y ou should normally use the" " form for your own headers rather than <>.

Do not put definitions of functions or variables in header files— it may result in
multiple definitions of the same name, so linking will fail. Header files should
normally only contain types, function prototypes, variable declarations, and macro
definitions. Note that inline functions are exceptional.

Macros
The preprocessor alows macros to be defined which serve a number of purposes:

- Some macros are used to hold constants or expressions:

#define Pl 3.14159

double pi_twice = Pl * 2;

Pl will be replaced by the numeric value wherever it is used.

- Some macros take arguments:

#define MAX(A B) ((A) > (B) ? (A : (B))

that provide a convenient way to emulate functions without the overhead of a
real function call. (See a good book on C for the limitations of this.)

- Some macros are merely defined to exist:

#defi ne JOB_DONE

and are used in conditional compilation.
Conditional compilation

The preprocessor allows code to be compiled selectively, depending on some
condition. For example, if we assume that the macro __uni x__ is defined only when
compiling for aUNIX system, and that the macro __wi ndows__ is defined only
when compiling for a Windows system, then we could provide a single piece of
code containing two possible implementations depending on the intended target:

16

int file_exists(const char *nane)
{
#if defined(__unix_)
/* use UNI X systemcalls to find out if the file exists */
#elif defined(__w ndows_)
/* use Wndows systemcalls to find out if the file exists */
#el se
/* don't know what to do - abort conpilation */
#error "No inplenentation for your platform"”
#endi f

}

The most common use of conditional compilation, though, isto prevent the
declarations in a header file from being made more than once, should the file be
inadvertently #i ncl uded more than once:

/[* in the file nydecls.h */
#i f !defined(nydecl s_header)
#def i ne nydecl s_header
typedef int nylnteger;

#endi f

Y ou should normally protect al your header filesin thisway.

Pointers instead of references

All variables of non-primitive types in Java are references. C has no concept of
‘reference’, but instead has pointers, which Java does not.

A pointer is an address in memory of some ordinary data. A variable may be of
pointer type, i.e. it holds the address of some datain memory.

17

/* we'll assune we're inside sonme block statenent, as in a function
&/

int i, j; /* i and j are integer variables */
int *ip; /* ipis a variable which can point to an integer
vari able */

/* val ues assigned */

ip=&; [/[* ip pointstoi */
ip=5; / indirectly assign 5to i */
ip=¢&; [/* ip pointsto | */

Ip += 7; / j now contains 27 */

i += *ip; /* i now contains 32 */

FAE AR
/1Py fin

Gl e

The & operator obtains the address of avariable (the syntax ensures that there is no
conflict with the bit-wise ‘and’ operator). The * operator dereferences the pointer
(again, the syntax ensures that there is no conflict with the multiplication operator).
A dereferenced pointer can be used on the left-hand side of an assignment, i.e. it isa
modifiable Ivalue (‘ el-value’), as in the two examples above.

Pointer types

For every type, there is a pointer type. Since thereisani nt type, thereisalso a
pointer-to-i nt type, writtenint *.fl oat * iSthe pointer-to-f | oat type. When
assigning a pointer value to a variable, or comparing two pointer values, the types
must match. Given these declarations:

int i, j;
float f;
int *ip;
float *fp;

...theni isof typei nt, so the expression & must be of typeint *.ip isof type
int *,SOyoucanassign& toit. & isof typeint *, soit can be compared with
& , and so on.

But &f isof typefl oat *, soit cannot be assigned to i p, or compared withi p, &
or é&j .

18

Null and undefined pointers

A valid value for a pointer may be null (it equals0), indicating that it pointsto no
object. Do not dereference a null pointer. Many of the standard header files define
amacro for anull pointer, NULL, which some programmers may prefer.

#i ncl ude <stdlib. h>
int *ip;

ip = NULL;

; 5
Fa
1R
i 3
\

NULL

It is permissible to use pointers as integer expressions treated as boolean expressions
to detect a null pointer (null means ‘false’ in this context). For example:

int *ip;

it (ip) {
/[* ipis not null */

}
it (tip) {

/* ipis null */

}

Direct comparisons are also possible (e.g.ip ! = NULL).

If a pointer variable has been neither initialised nor assigned the address of areal
object, it could be pointing anywhere, or be null. Do not dereference such an
undefined pointer.

Dangling pointers
In Java, an object will remain in existence so long asthereis areferencetoit. In C,

an object may go out of existence even if there are pointersto it — the programmer
is entirely responsible for ensuring that pointers contain valid addresses (either 0, or

19

the address of an existing object) when used. This badly written function returns a
pointer to an integer variable:

i nt *badfunc(voi d)

{
int x = 18;

return &; /* bad - x won't exist after the call has finished */

}

The pointer returned by badf unc() isinvalid.
Passing arguments by reference

In Java, all primitive types are passed to functions by value — the function is unable
to change values of variables in the invoking context. All reference types are passed
by reference — the function can alter the public contents of the referenced object.

In C, almost all types are passed by value, and so no variables supplied as arguments
can be altered by a function. It can only alter itslocal copy of the variables.
However, by passing a pointer to the variable, the function is able to dereference its
copy of the pointer, and indirectly assign to the variable. Consider these two
functions which are intended to swap the values of two variables:

voi d badswap(int a, int b)
{
int tnp = b;
= a
tp;
* a and b are swapped but they're only copies */

b
a
/
}

voi d goodswap(int *ap, int *bp)

/* assume we're in a function body */
int x =10, y = 4;

printf("1: x =% vy = %\n", x, y); /* print state of variables */
badswap(x, Vy);
/* x and y are copied, and the copies are swapped
so x and y are unchanged */
printf("2: x =% vy = %\n", x, y);

goodswap(&, &y);
/* pointers tell goodswap() where we store x and y */

20

printf("3: x =% vy = %\n", x, y);

This reports:

1: x =10y =4
2. x =10y =4
3: x =4y =10

fap& /=

x &> 104 ftmp,
;bp\"-," Iy \ 2 . [.
Gy @p——pl 4 ~—-""'1/

Pointers to structures and unions

A pointer to a variable of structure type may exist. Accessing a member of the
structureis straight-forward: dereference the pointer, and apply the . operator.
However, parentheses are needed to ensure the correct meaning, but a short form
also exists (and is widely used) for convenience:

struct point |oc;
struct point *locp = &l oc;

(*locp).x = 10; /* correct */
[ocp. x = 10; / incorrect; sane as *(locp.x) */
| ocp->x = 10; /* correct, shorter form™*/

Syntactically, pointersto unions are accessed identically.
Pointers to functions
Functions also have addresses, for which there are pointer-to-function types

expressing the parameters and return type. The pointers can be passed to or returned
from other functions just as other data can.

voi d goodswap(int *, int *);
void (*swapfunc)(int *, int *); /* a pointer called swapfunc */
int x, vy;

swapfunc = &goodswap; /* now it points to a function

21

wi th matchi ng paraneters */
(*swapfunc) (&, &y); /* invokes goodswap(&x, &y) */

Since pointers to functions are just values like any other, they can be passed to and
returned from functions, so that ‘behaviour’ becomes just another form of data.

Pointers to pointers

A pointer may point to variable which itself holds another pointer, and thisis
expressed in the pointer's type:

i nt i; /* i holds an integer */
i nt *ip = & ; /[* ip points to i */

int **ipp =& p; [/* ipp points toip */
int ***ippp = & pp; /* ippp points to ipp */
/* et cetera */

The fact that the pointed-to object also holds a pointer does not fundamentally
change the behaviour of the pointer that pointsto it. It just allows a further level of
indirection — in practice, you rarely need more than a couple of levels.

Generic pointers

It is sometimes necessary to store or pass pointers without knowing what type they
point to. For this, you can use the generic pointer typevoi d *. Y ou can convert
between the generic pointer type and other pointer types (but not pointer-to-function
types) whenever you need to:

int Xx;

int *xp, *yp

void *vp

Xp = &X;

vp = Xp; /* types are conpatible */

/* later... */

yp = vp; /* types are conpatible */

A generic pointer cannot be dereferenced, nor can pointer arithmetic be applied to it.

X = *vp; [* error: cannot dereference void * */
vp++; /* error: cannot do arithnmetic on void * */

22

The generic pointer type simply allows you to tell the compiler that you're taking
responsibility for a pointer's interpretation, and so no error messages or warnings are
to be reported when assigning. It is the programmer's responsibility to ensure that
the pointer value is interpreted as the correct type.

int *ip;
float *fp;
void *vp
| fp =ip; [/* error: inconpatible types */
vp = ip; [/* okay */
fp =vp; /* no conpiler error, but is msuse */

Generic pointers are used with dynamic memory management, among other things.

Arrays and pointer arithmetic

Arraysin Java are reference types with automatic allocation of memory. In C, arrays
are groups of variables of the same type in adjacent memory. Allocation for dynamic
arrays is handled by the programmer. An array of integers may look like this:

int array[10]; /* nunbered O to 9 */
int i = 6;

array| 3]
array[i]

12;
13;

farravh
i 5

12 13

Initialising arrays

Arrays may be initialised when defined:

int nyArray[4] ={ 9, 8, 7, 6 };

The size is optional in this case, since the compiler sees that there are four elements
inthe initialiser. The initialiser must not be bigger than the size if specified, but it
can be smaller. Either way, the size must be known at compile time — it must not be
an expression in terms of the values of other objects or function calls.

In C99, you can specify which elements of an array are initialised:

23

int nyArray[4] ={ [2] =7, [0] =9, [1] =8, [3] =6 };

Array-pointer relationship

The address of an array element can be taken, and simple arithmetic can be applied
to it. Adding one to the address makes it point to the next element in the array.
Subtracting one instead makes it point to the previous element.

int nyArray[4] ={ 9, 8, 7, 6 };
int *aep = &nyArray[2];
int x, i;

(aep + 1) = 2; / set nyArray[3] to 2 */
(aep - 1) += 11; / set nmyArray[1l] to 19 */
X = *(aep - 2); /* set x to 9 */

f)
Jaep,

. |
I,)
flfarra}?"\\r-

R\ / o|8|7]s
i Z| 2 3 \

By definition, *(aep + i) isequivalent to aep[i], and in many contexts, an array
name such asnyAr r ay evaluates to the address of the first element, which is how
expressions such asnyArr ay[2] work (it becomes*(nyArray + 2)). The code
above could be written as.

int nyArray[4] ={ 9, 8, 7, 6 };
int *aep = &nyArray[2];

int x, i;

aep[1] = 2; /* set nmyArray[3] to 2 */
aep[-1] += 11; /* set nyArray[1l] to 19 */
X = aep[-2]; /* set x to 9 */

Note that an array name such as nyAr r ay can not be made to point elsewhere:

int nyArray[4];
int i;
int *ip;

24

ip =nyArray; /* okay: nyArray is a | egal expression; ip now points
to nyArray[0] */
myArray = & ; /* error: myArray is not a variable */

Passing arrays to functions

Arrays are effectively passed to functions by reference. The array name evaluates to
apointer to the first element, so the function's parameter has a type of ‘ pointer-to-
element-type’. For example, given the function:

void fill _array_w th_square_nunbers(int *first, int |ength)
{
int i;
for (i =0; i < length; i++)
first[i] =i * i;
}

we could write code such as:

i nt squares[4], noresquares[10];

void fill _array_w th_square_nunbers(int *first, int |ength);
fill _array_w th_square_nunbers(squares, 4);
fill _array_w th_square_nunbers(noresquares + 2, 7);

The second call only fills part of the array nor esquar es.

¢ i1
/moresguares),
! iy

Note that the programmer must take stepsto indicate the length of the array, in this
case by defining the function to take a length argument (an alternative would be to
identify a special value within the array to mark its end). The second call only has

elements 2 to 8 set (an array of length 7).

25

Array length

Because squar es above is the name of an array, we can obtain its length using
si zeof squar es, which returns the total size as a number of chars.

si zeof squares[0] returnsthe size (in char s) of one element, and since all the
elements are of the same size, the ratio of these two si zeof sisthe number of
elements in the array:

fill_array_wi th_square_nunbers(squares,
si zeof squares / sizeof squares[O0]);

(For arrays of char s, the divisor can be omitted, since si zeof (char) isdefined to
be1.)

However, this technique doesn't work if the argument to si zeof isa pointer to the
first element of an array: consider that such a pointer looks identical to a pointer to a
single object, as far as the compiler is concerned — they don't contain any
information about the length. This is why the example function above requires the
length as a separate argument: within the function, si zeof first would only give
the size of a pointer to an integer, not the length of the array.

Arrays as function parameters
Note that afunction parameter of array type isn't treated as an array, but as a pointer

(the array syntax is allowed, but only pointer semantics are implemented). The
following declaration is equivalent to the one above:

void fill _array_w th_square_nunbers(int first[], int |ength);

Within the definition of this function, si zeof first will sill equal
si zeof (i nt *), evenif we place alength inside the square brackets (such avalue is
ignored anyway).

const instead of fi nal

Java uses the keyword f i nal to indicate ‘variables’ which can only be assigned to
once (usually where they are declared). C uses the keyword const with an object
declaration to indicate a constant object that can (and must) be initialised, but cannot
subsequently be assigned to — it is not a variable, but it still has an addressand a
Size (so you can write &obj or si zeof obj).

doubl e sin(double); /* mathematical function sine */

const double pi = 3.14159;

26

doubl e val

val = sin(pi); /* legal expression */
pi = 3.0; /* illegal; not a nodifiable |value */

Pointers to const objects

const isuseful when declaring functions that take pointers or arrays as arguments,
but do not modify the dereferenced contents:

int sum(const int *ar, int |en)

{
int s =20, i;
for (i =0; i <len; i++4)
s += ar[i];
return s;
}

int array[] ={ 1, 2, 4, 5};

int total = sun(array, 4);

The const assures us that the invocation will not attempt to assignto *arr ay (or
array[1], array[2], €tc).

const pointers

Pointers themselves can be declared const just like other objects. In these cases, the
pointer can't be made to point elsewhere, but what it points to can be modified
(assuming that that isn't further const -qualified). Careful positioning of the keyword
const isrequired to distinguish constant pointers from pointersto constants:

int array ={ 1, 2, 4, 5};

int *ip = array; /* a pointer to an integer */
int *const ipc = array; /* a constant pointer to an integer
*/

const int *const icpc = array; /* a constant pointer to a constant
i nteger */

i pc[0] = ipc[l] + ipc[2]; /* okay */

ip += 2; /* okay */

i pc += 1; /* wrong; pointer is constant */
i cpc[1l] += 4; /* wrong; pointed-to object is

constant */

This example shows a modifiable array whose members are being accessed through
four pointers with slightly different types.

27

Inline functions

C99 supportsinline functions. The programmer can indicate to the compiler that a
function's speed is critical by making iti nl i ne:

inline int square(int x)

{

return x * X;

}

If this definition is in scope, and you make a call to it, the compiler may choose not
to actually go through the overhead of calling the function, but effectively place a
copy of it inside the calling function.

Inline function definitions can (and often should) appear in header files instead of
their prototypes. A normal (‘external’) definition must till be provided — for
example, some part of your program may try to obtain a pointer to the function, and
only anormal definition can provide that.

If the inline definition is in scope, an equivalent external definition can be generated
from it by simply redclaring the function with ext er n:

extern int square(int x);

If the inline definition isn't in scope, you could provide a normal definition which
doesn't actually match the inline definition — but this could lead to confusing
behaviour.

Characters and strings

A Java variable of type char can hold any Unicode character. In C, the char type
can represent any character in a character set that depends on the type of system or
platform for which the program is compiled. Thisisusually a variation of

US ASCII, but it doesn't have to be, so beware. In particular, it could be a multibyte
encoding, where alarger set of characters are represented by several char objects,
e.g. UTF-8; abasic set of characters, however, are always represented as single
char S.

Java strings are objects of classj ava. | ang. String or j ava. | ang. StringBuffer,
and represent sequences of char .

Strings in C are just arrays of, or pointers to, char . Functions which handle strings

typically assume that the string is terminated with a null character ' \ 0' , rather than
being passed length parameter. A character array can be initialised like other arrays:

28

char word[] ={ '"H, "e", "', "', "o, "', "\0 },;
char another[] = "Hello!";

Note that the second initialiser is a shorter form of the first, including the
terminating null character. Such a string literal can also appear in an expression. It
evaluates to a pointer to the first character.

const char *ptr;

ptr = "Hello!";

pt r now pointsto an anonymous, statically allocated array of characters. Attempting
to writeto a string literal like this has undefined behaviour, so the use of const
ensures that such attempts are detected while compiling.

Utilities for handling character strings are declared in <st ri ng. h>. For example, the
function to copy a string from one place to another is declared as:

char *strcpy(char *to, const char *fronj;

and may be used like this:

#i ncl ude <string. h>

char wor ds[100];

strcpy(words, "Madam |'m Adam");

Like many of the other <st ri ng. h> functions, st r cpy assumes that you have
already allocated sufficient space to store the string.

Dynamic memory management
Dynamic memory management is built into Java through its new keyword and its

garbage collector. In C, it is available through two functionsin <st dl i b. h> which
are declared as.

void *mall oc(size_t s); /* reserve menory for s chars */
void free(void *); /* rel ease nenory reserved with malloc() */

(si ze_t isanaliasfor an unsigned integral type.)

29

mal | oc('s) returns apointer to the start of a block of memory big enough for s
char s. It returns a generic pointer which can be assigned to a pointer of any type.
The memory is not initialised. All such allocated memory must be released when it
is no longer required by passing a pointer to itsstart to f r ee() . Only pointer values
returned by nmal | oc() canbepassedtofree().

Y ou can find out the amount of memory needed to store an object of a particular
type using si zeof (t ype) . For an array, multiply this by the required size of the
array.

| ong *Ip;
| ong *I ap;

I p = mall oc(sizeof (1ong));
lap = mall oc(sizeof (long) * 10);

/* now we can access *Ip as a |long integer
and lap[0]..lap[9] forman array */

free(lap);
free(lp);

/* now we can't */

mal | oc() returnsanull pointer (0) if it cannot allocate the requested amount of
memory.

Lack of exceptions

Java supports exceptions to cover application-defined mistakes as well as more
serious system or memory-access errors (such as accessing beyond the bounds of an
array).

In C, application-defined error conditions are normally expressed through careful
definition of the meaning of values returned by functions. More serious errors, such
as an attempt to access memory that hasn't been allocated in some way, may go
unnoticed (because the behaviour is undefined). Write-access to such memory may
cause corruption of critical hidden data, which only resultsin an error at alater
stage, s0 the original cause of the error may be difficult to trace. Just because some
activity isillegal in C, it doesn't mean that you will necessarily betold about it,
either by the compiler or by the running program.

mai n() function
In a Java application, execution begins in a static method (voi d mai n(String[]))

of a specified class. In C, execution also begins at a function called mai n, but it has
the following prototype:

30

int main(int argc, char **argv);

The parameters represent an array of character strings that form the command that
ran the program. ar gv[0] isusually the name of the program, ar gv[1] isthe first
argument, ar gv[2] isthesecond, ..., argv[argc - 1] isthelast, and ar gv[ar gc]
isanull pointer. For example, the command

nmyprog w bbly wobbly

may cause mai n to be invoked asiif by:

char al[] = "nyprog";
char a2[] = "wi bbly";
char a3[] = "wobbly";

char *argv[4] = { al, a2, a3, NULL };

mai n(3, argv);

The parameters are optional (you can replace them with asingle voi d), but mai n
alwaysreturnsi nt in any portable program. Returning 0 tells the environment that
the program completed successfully. Other values (implementation-defined) indicate
some sort of failure. <st dl i b. h> defines the macros ExI T_SUCCESS and

EXI T_FAI LURE as symbolic return codes.

Standard library facilities

Java comes with arich and still-developing set of classes to support I/O, networking,
GUIs, etc, to access a process's environment.

Similarly, the C language has a core of facilities to access its environment. These
functions, types and macros form C's Standard Library. It is necessarily limited in
order to support maximum portability (it provides no GUI facilities, for example),
but it is largely fixed and stable. Access to other facilities (GUI, networking) is
through additional libraries that are usually specific to your platform.
The headers of the C Standard Library are briefly summarised below:

<st ddef . h>

Some essential macros and additional type declarations

<stdlib. h>

Access to environment; dynamic memory allocation; miscellaneous utilities

31

<stdi 0. h>

Streamed input and output of characters

<string. h>

String handling

<ctype. h>

Classification of characters (upper/lower case, aphabetic/numeric etc)
<limts.h>

I mplementation-defined limits for integral types

<fl oat. h>

I mplementation-defined limits for floating-point types
<mat h. h>

Mathematical functions

<assert. h>

Diagnostic utilities

<errno. h>

Error identification

<l ocal e. h>

Regional/national variations in character sets, time formats, etc
<stdarg. h>

Support for functions with variable numbers of arguments
<tinme. h>

Representations of time, and clock access

<si gnal . h>

Handling of exceptional run-time events

32

<setj nmp. h>

Restoration of execution to a previous state
C95 additionally provides the following headers:

<i s0646. h>

Alphabetic names for operators

<wchar . h>

Manipulation of wide-character streams and strings

<wct ype. h>

Classification of wide characters (upper/lower case, alphabetic/numeric etc)
C99 additionally provides the following headers:

<st dbool . h>

The boolean type and constants

<conpl ex. h>

The complex types and constants

<i nttypes. h>
<stdint. h>

Integer types of specific or minimum widths

<fenv. h>

Access to the floating-point environment

<t gmat h. h>

Type-generic mathematics functions

33

