
1

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 1

Chapter 6
� Requirements Modeling: Scenarios, Information,

and Analysis Classes

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 7/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2

Requirements Analysis
� Requirements analysis

� specifies software’s operational characteristics
� indicates software's interface with other system elements
� establishes constraints that software must meet

� Requirements analysis allows the software engineer
(called an analyst or modeler in this role) to:
� elaborate on basic requirements established during earlier

requirement engineering tasks
� build models that depict user scenarios, functional

activities, problem classes and their relationships, system
and class behavior, and the flow of data as it is
transformed.

2

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 3

A Bridge

system
description

analysis
model

design
model

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4

Rules of Thumb
� The model should focus on requirements that are visible

within the problem or business domain. The level of
abstraction should be relatively high.

� Each element of the analysis model should add to an overall
understanding of software requirements and provide insight
into the information domain, function and behavior of the
system.

� Delay consideration of infrastructure and other non-
functional models until design.

� Minimize coupling throughout the system.
� Be certain that the analysis model provides value to all

stakeholders.
� Keep the model as simple as it can be.

3

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5

Domain Analysis
Software domain analysis is the identification, analysis, Software domain analysis is the identification, analysis,
and specification of common requirements from a and specification of common requirements from a
specific application domain, typically for reuse on specific application domain, typically for reuse on
multiple projects within that application domain . . . multiple projects within that application domain . . .
[Object[Object--oriented domain analysis is] the identification, oriented domain analysis is] the identification,
analysis, and specification of common, reusable analysis, and specification of common, reusable
capabilities within a specific application domain, in capabilities within a specific application domain, in
terms of common objects, classes, subassemblies, and terms of common objects, classes, subassemblies, and
frameworks . . .frameworks . . .

Donald Firesmith

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6

Domain Analysis
� Define the domain to be investigated.
� Collect a representative sample of applications

in the domain.
� Analyze each application in the sample.
� Develop an analysis model for the objects.

4

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 7

Scenario-Based Modeling

““[Use[Use--cases] are simply an aid to defining what exists cases] are simply an aid to defining what exists
outside the system (actors) and what should be outside the system (actors) and what should be
performed by the system (useperformed by the system (use--cases).cases).”” IvarIvar JacobsonJacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8

What to Write About?
� Inception and elicitation—provide you with the

information you’ll need to begin writing use cases.
� Requirements gathering meetings, QFD, and other

requirements engineering mechanisms are used to
� identify stakeholders
� define the scope of the problem
� specify overall operational goals
� establish priorities
� outline all known functional requirements, and
� describe the things (objects) that will be manipulated by the

system.

� To begin developing a set of use cases, list the functions
or activities performed by a specific actor.

5

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 9

How Much to Write About?
� As further conversations with the stakeholders

progress, the requirements gathering team
develops use cases for each of the functions
noted.

� In general, use cases are written first in an
informal narrative fashion.

� If more formality is required, the same use
case is rewritten using a structured format
similar to the one proposed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 10

Use-Cases
� a scenario that describes a “thread of usage” for

a system
� actors represent roles people or devices play as

the system functions
� users can play a number of different roles for a

given scenario

6

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Developing a Use-Case
� What are the main tasks or functions that are performed by

the actor?
� What system information will the the actor acquire,

produce or change?
� Will the actor have to inform the system about changes in

the external environment?
� What information does the actor desire from the system?
� Does the actor wish to be informed about unexpected

changes?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12

Use-Case Diagram

homeowner

Access camera
surveillance via the

Internet

Configure SafeHome
system parameters

Set alarm

cameras

SafeHome

7

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 13

Data Modeling
� examines data objects independently of

processing
� focuses attention on the data domain
� creates a model at the customer’s level

of abstraction
� indicates how data objects relate to one

another

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 14

Class-Based Modeling
� Class-based modeling represents:

� objects that the system will manipulate
� operations (also called methods or services) that will

be applied to the objects to effect the manipulation

� relationships (some hierarchical) between the objects

� collaborations that occur between the classes that
are defined.

� The elements of a class-based model include
classes and objects, attributes, operations, and
collaboration diagrams.

8

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 15

Identifying Analysis Classes

� Examining the usage scenarios developed as
part of the requirements model and perform a
"grammatical parse" [Abb83]
� Classes are determined by underlining each noun or

noun phrase and entering it into a simple table.
� Synonyms should be noted.
� If the class (noun) is required to implement a

solution, then it is part of the solution space;
otherwise, if a class is necessary only to describe a
solution, it is part of the problem space.

� But what should we look for once all of the
nouns have been isolated?

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 16

Manifestations of Analysis Classes
� Analysis classes manifest themselves in one of the

following ways:
• External entities (e.g., other systems, devices, people) that

produce or consume information

• Things (e.g, reports, displays, letters, signals) that are part of
the information domain for the problem

• Occurrences or events (e.g., a property transfer or the
completion of a series of robot movements) that occur within
the context of system operation

• Roles (e.g., manager, engineer, salesperson) played by
people who interact with the system

• Organizational units (e.g., division, group, team) that are
relevant to an application

• Places (e.g., manufacturing floor or loading dock) that
establish the context of the problem and the overall function

• Structures (e.g., sensors, four-wheeled vehicles, or
computers) that define a class of objects or related classes of
objects

9

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17

Potential Classes
� Retained information. The potential class will be useful during analysis

only if information about it must be remembered so that the system can
function.

� Needed services. The potential class must have a set of identifiable
operations that can change the value of its attributes in some way.

� Multiple attributes. During requirement analysis, the focus should be on
"major" information; a class with a single attribute may, in fact, be
useful during design, but is probably better represented as an attribute
of another class during the analysis activity.

� Common attributes. A set of attributes can be defined for the potential
class and these attributes apply to all instances of the class.

� Common operations. A set of operations can be defined for the
potential class and these operations apply to all instances of the class.

� Essential requirements. External entities that appear in the problem
space and produce or consume information essential to the operation
of any solution for the system will almost always be defined as classes
in the requirements model.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 18

Defining Attributes

� Attributes describe a class that has been
selected for inclusion in the analysis model.
� build two different classes for professional baseball

players
• For Playing Statistics software: name, position,

batting average, fielding percentage, years played, and
games played might be relevant

• For Pension Fund software: average salary, credit
toward full vesting, pension plan options chosen,
mailing address, and the like.

10

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 19

Defining Operations

� Do a grammatical parse of a processing
narrative and look at the verbs

� Operations can be divided into four broad
categories:
� (1) operations that manipulate data in some way

(e.g., adding, deleting, reformatting, selecting)

� (2) operations that perform a computation

� (3) operations that inquire about the state of an
object, and

� (4) operations that monitor an object for the
occurrence of a controlling event.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 20

Responsibilities
� System intelligence should be distributed across classes

to best address the needs of the problem
� Each responsibility should be stated as generally as

possible
� Information and the behavior related to it should reside

within the same class
� Information about one thing should be localized with a

single class, not distributed across multiple classes.
� Responsibilities should be shared among related

classes, when appropriate.

11

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 21

Collaborations
� Classes fulfill their responsibilities in one of two ways:

� A class can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

� a class can collaborate with other classes.

� Collaborations identify relationships between classes

� Collaborations are identified by determining whether a class
can fulfill each responsibility itself

� three different generic relationships between classes [WIR90]:
� the is-part-of relationship
� the has-knowledge-of relationship
� the depends-upon relationship

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 22

Associations and Dependencies

� Two analysis classes are often related to one
another in some fashion
� In UML these relationships are called associations

� Associations can be refined by indicating multiplicity
(the term cardinality is used in data modeling

� In many instances, a client-server relationship
exists between two analysis classes.
� In such cases, a client-class depends on the server-

class in some way and a dependency relationship is
established

12

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 23

Multiplicity

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 24

Dependencies

CameraDisplayWindow

{password}

<<access>>

