

AntiPatterns

4010-362

Engineering of Software Subsystems

2

Rochester Institute of Technology

Reference

AntiPatterns: Refactoring Software, Architectures,

and Projects in Crisis

William J Brown, Raphael C Malveau, Hays W

“Skip” McCormick III, Thomas J Mowbray

John Wiley & Sons, 1998

3

Rochester Institute of Technology

AntiPatterns

A pattern of practice that is commonly found in

use

A pattern which when practiced usually results

in negative consequences

Patterns defined in several categories of

software development

• Design

• Architecture

• Project Management

4

Rochester Institute of Technology

Purpose for AntiPatterns

Identify problems

Develop and implement strategies to fix

– Work incrementally

– Many alternatives to consider

– Beware of the cure being worse than the

disease

5

Rochester Institute of Technology

Forces Creating Anti-Patterns

Management of

• Functionality

• Performance

• Complexity

• Change

• IT resources

• Technology transfer

6

Rochester Institute of Technology

Pattern vs. AntiPattern

Patterns

• Usually bottom up

• Begin with recurring solution

• Then the forces and context

• Usually leads to one solution

AntiPatterns

• Top down

• Begin with commonly recurring practice

• Obvious negative consequences

• Symptoms are past and present;

consequences go into the future

7

Rochester Institute of Technology

Software Design AntiPatterns

AntiPatterns

• The Blob

• Lava Flow

• Functional

Decomposition

• Poltergeists

• Golden Hammer

• Spaghetti Code

• Copy-and-Paste

Programming

Mini-AntiPatterns

• Continuous

Obsolescence

• Ambiguous Viewpoint

• Boat Anchor

• Dead End

• Input Kludge

• Walking through a

Minefield

• Mushroom Management

8

Rochester Institute of Technology

Refactoring – Preview

Design AntiPatterns are solved by refactoring

AntiPattern provides a useful refactoring

Refactoring

• Natural activity

• Places structure back into the system

• Do before performance optimization

– Often compromises structure

– Refactoring limits to small portion

9

Rochester Institute of Technology

The Blob

AKA

• Winnebago, The God Class, Kitchen Sink

Class

Anecdotal Evidence:

• “This class is the heart of our system.”

10

Rochester Institute of Technology

The Blob (2)

Like the blob in the movie can consume entire
strucutres, i.e. your O-O architecture
Symptoms

• Single controller class, multiple simple data
classes

• No object-oriented design, i.e. all in main
• Start with a legacy design

Problems
• Too complex to test or reuse
• Expensive to load into system

Procedural design  separates process from
data
• OO design merges process and data

11

Rochester Institute of Technology

Causes

Lack of OO architecture

Lack of any architecture

Lack of architecture enforcement

Limited refactoring intervention

Iterative development

• Proof-of-concept to prototype to production

• Allocation of responsibilities not repartitioned

12

Rochester Institute of Technology

Solution

Identify or categorize related attributes and

operations

Migrate functionality to data classes

13

Rochester Institute of Technology

Lava Flow

AKA

• Dead Code

Anecdotal Evidence

• “Oh that! I don’t think it’s used anywhere now,
but I’m not really sure. It is really not
documented clearly, so we figured we would just
leave well enough alone for now. After all, it
works.”

Code, like lava, is fluid when it starts life then

becomes hard and immovable later

14

Rochester Institute of Technology

Symptoms and Consequences

Unjustifiable variables and code fragments

Undocumented complex, important-looking

functions, classes

Large commented-out code with no

explanations

Lot’s of “to be replaced” code

Obsolete interfaces in header files

Proliferates as code is reused

15

Rochester Institute of Technology

Causes

Research code moved into production

Uncontrolled distribution of unfinished code

No configuration management in place

Lack of architecture

16

Rochester Institute of Technology

Solution

Don’t get to that point

Have stable, well-defined interfaces

Slowly remove dead code; gain a full

understanding of any bugs introduced

Strong architecture moving forward

17

Rochester Institute of Technology

Functional Decompostion

AKA

• No OO

Anecdotal Evidence

• “This is our ‘main’ routine, here in the class
called Listener.”

18

Rochester Institute of Technology

Symptoms and Consequences

Non-OO programmers make each subroutine a

class

Classes with functional names

• Calculate_Interest

• Display_Table

Classes with single method

No leveraging of OO principles

No hope of reuse

19

Rochester Institute of Technology

Causes

Lack of OO understanding

Lack of architecture enforcement

20

Rochester Institute of Technology

Solution

Perform analysis

Develop design model that incorporates as

much of the system as possible

For classes outside model:

• Single method: find home in existing class

where the data resides

• Combine classes

• No state: static function

21

Rochester Institute of Technology

Poltergeists

AKA

• Gypsy, Proliferation of Classes

Anecdotal Evidence

• “I’m not exactly sure what this class does, but it
sure is important.”

22

Rochester Institute of Technology

Symptoms and Consequences

Transient associations that go “bump-in-the-

night”

Short-lived, stateless classes

Classes that begin operations but do nothing

else

Classes with control-like names or suffixed with

manager or controller. Only invoke methods in

other classes.

23

Rochester Institute of Technology

Causes

Lack of OO experience

Maybe OO is incorrect tool for the job.

• “There is no right way to do the wrong thing.”

24

Rochester Institute of Technology

Solution

Remove Poltergeist altogether

Move controlling actions to related classes

25

Rochester Institute of Technology

Copy-and-Paste Programming

AKA

• Clipboard Coding

Anecdotal Evidence

• “Hey, I thought you fixed that bug already, so
why is it doing this again?”

• “Man, you guys work fast. Over 400,000 lines of
code in three weeks is outstanding progress!”

26

Rochester Institute of Technology

Symptoms and Consequences

Same software bug reoccurs

Code can be reused with a minimum of effort

Causes excessive maintenance costs

Multiple unique bug fixes develop

Inflates LOC without reducing maintenance

costs

27

Rochester Institute of Technology

Causes

Requires effort to create reusable code; must

reward for long-term investment

Development speed overshadows all other

factors

“Not-invented-here” reduces reuse

People unfamiliar with new technology or tools

just modify a working example

28

Rochester Institute of Technology

Solution

Code mining to find duplicate sections of code

Refactoring to develop standard version

Configuration management to assist in

prevention of future occurrence

29

Rochester Institute of Technology

Golden Hammer

AKA

• Old Yeller

Anecdotal Evidence

• “Our database is our architecture”
• “Maybe we shouldn’t have used Excel macros for

this job after all.”

30

Rochester Institute of Technology

Symptoms and Consequences

Identical tools for conceptually diverse

problems.

• “When your only tool is a hammer everything
looks like a nail.”

Solutions have inferior performance, scalability

and other ‘ilities’ compared to other solutions in

the industry.

Architecture is described by the tool set.

Requirements tailored to what tool set does

well.

31

Rochester Institute of Technology

Causes

Development team is highly proficient with one

toolset.

Several successes with tool set.

Large investment in tool set.

Development team is out of touch with industry.

32

Rochester Institute of Technology

Solution

Organization must commit to exploration of new

technologies

Commitment to professional development of

staff

Defined software boundaries to ease

replacement of subsystems

Staff hired with different backgrounds and from

different areas

Use open systems and architectures

