

AntiPatterns

4010-362

Engineering of Software Subsystems

2

Rochester Institute of Technology

Reference

AntiPatterns: Refactoring Software, Architectures,

and Projects in Crisis

William J Brown, Raphael C Malveau, Hays W

“Skip” McCormick III, Thomas J Mowbray

John Wiley & Sons, 1998

3

Rochester Institute of Technology

AntiPatterns

A pattern of practice that is commonly found in

use

A pattern which when practiced usually results

in negative consequences

Patterns defined in several categories of

software development

• Design

• Architecture

• Project Management

4

Rochester Institute of Technology

Purpose for AntiPatterns

Identify problems

Develop and implement strategies to fix

– Work incrementally

– Many alternatives to consider

– Beware of the cure being worse than the

disease

5

Rochester Institute of Technology

Forces Creating Anti-Patterns

Management of

• Functionality

• Performance

• Complexity

• Change

• IT resources

• Technology transfer

6

Rochester Institute of Technology

Pattern vs. AntiPattern

Patterns

• Usually bottom up

• Begin with recurring solution

• Then the forces and context

• Usually leads to one solution

AntiPatterns

• Top down

• Begin with commonly recurring practice

• Obvious negative consequences

• Symptoms are past and present;

consequences go into the future

7

Rochester Institute of Technology

Software Design AntiPatterns

AntiPatterns

• The Blob

• Lava Flow

• Functional

Decomposition

• Poltergeists

• Golden Hammer

• Spaghetti Code

• Copy-and-Paste

Programming

Mini-AntiPatterns

• Continuous

Obsolescence

• Ambiguous Viewpoint

• Boat Anchor

• Dead End

• Input Kludge

• Walking through a

Minefield

• Mushroom Management

8

Rochester Institute of Technology

Refactoring – Preview

Design AntiPatterns are solved by refactoring

AntiPattern provides a useful refactoring

Refactoring

• Natural activity

• Places structure back into the system

• Do before performance optimization

– Often compromises structure

– Refactoring limits to small portion

9

Rochester Institute of Technology

The Blob

AKA

• Winnebago, The God Class, Kitchen Sink

Class

Anecdotal Evidence:

• “This class is the heart of our system.”

10

Rochester Institute of Technology

The Blob (2)

Like the blob in the movie can consume entire
strucutres, i.e. your O-O architecture
Symptoms

• Single controller class, multiple simple data
classes

• No object-oriented design, i.e. all in main
• Start with a legacy design

Problems
• Too complex to test or reuse
• Expensive to load into system

Procedural design separates process from
data
• OO design merges process and data

11

Rochester Institute of Technology

Causes

Lack of OO architecture

Lack of any architecture

Lack of architecture enforcement

Limited refactoring intervention

Iterative development

• Proof-of-concept to prototype to production

• Allocation of responsibilities not repartitioned

12

Rochester Institute of Technology

Solution

Identify or categorize related attributes and

operations

Migrate functionality to data classes

13

Rochester Institute of Technology

Lava Flow

AKA

• Dead Code

Anecdotal Evidence

• “Oh that! I don’t think it’s used anywhere now,
but I’m not really sure. It is really not
documented clearly, so we figured we would just
leave well enough alone for now. After all, it
works.”

Code, like lava, is fluid when it starts life then

becomes hard and immovable later

14

Rochester Institute of Technology

Symptoms and Consequences

Unjustifiable variables and code fragments

Undocumented complex, important-looking

functions, classes

Large commented-out code with no

explanations

Lot’s of “to be replaced” code

Obsolete interfaces in header files

Proliferates as code is reused

15

Rochester Institute of Technology

Causes

Research code moved into production

Uncontrolled distribution of unfinished code

No configuration management in place

Lack of architecture

16

Rochester Institute of Technology

Solution

Don’t get to that point

Have stable, well-defined interfaces

Slowly remove dead code; gain a full

understanding of any bugs introduced

Strong architecture moving forward

17

Rochester Institute of Technology

Functional Decompostion

AKA

• No OO

Anecdotal Evidence

• “This is our ‘main’ routine, here in the class
called Listener.”

18

Rochester Institute of Technology

Symptoms and Consequences

Non-OO programmers make each subroutine a

class

Classes with functional names

• Calculate_Interest

• Display_Table

Classes with single method

No leveraging of OO principles

No hope of reuse

19

Rochester Institute of Technology

Causes

Lack of OO understanding

Lack of architecture enforcement

20

Rochester Institute of Technology

Solution

Perform analysis

Develop design model that incorporates as

much of the system as possible

For classes outside model:

• Single method: find home in existing class

where the data resides

• Combine classes

• No state: static function

21

Rochester Institute of Technology

Poltergeists

AKA

• Gypsy, Proliferation of Classes

Anecdotal Evidence

• “I’m not exactly sure what this class does, but it
sure is important.”

22

Rochester Institute of Technology

Symptoms and Consequences

Transient associations that go “bump-in-the-

night”

Short-lived, stateless classes

Classes that begin operations but do nothing

else

Classes with control-like names or suffixed with

manager or controller. Only invoke methods in

other classes.

23

Rochester Institute of Technology

Causes

Lack of OO experience

Maybe OO is incorrect tool for the job.

• “There is no right way to do the wrong thing.”

24

Rochester Institute of Technology

Solution

Remove Poltergeist altogether

Move controlling actions to related classes

25

Rochester Institute of Technology

Copy-and-Paste Programming

AKA

• Clipboard Coding

Anecdotal Evidence

• “Hey, I thought you fixed that bug already, so
why is it doing this again?”

• “Man, you guys work fast. Over 400,000 lines of
code in three weeks is outstanding progress!”

26

Rochester Institute of Technology

Symptoms and Consequences

Same software bug reoccurs

Code can be reused with a minimum of effort

Causes excessive maintenance costs

Multiple unique bug fixes develop

Inflates LOC without reducing maintenance

costs

27

Rochester Institute of Technology

Causes

Requires effort to create reusable code; must

reward for long-term investment

Development speed overshadows all other

factors

“Not-invented-here” reduces reuse

People unfamiliar with new technology or tools

just modify a working example

28

Rochester Institute of Technology

Solution

Code mining to find duplicate sections of code

Refactoring to develop standard version

Configuration management to assist in

prevention of future occurrence

29

Rochester Institute of Technology

Golden Hammer

AKA

• Old Yeller

Anecdotal Evidence

• “Our database is our architecture”
• “Maybe we shouldn’t have used Excel macros for

this job after all.”

30

Rochester Institute of Technology

Symptoms and Consequences

Identical tools for conceptually diverse

problems.

• “When your only tool is a hammer everything
looks like a nail.”

Solutions have inferior performance, scalability

and other ‘ilities’ compared to other solutions in

the industry.

Architecture is described by the tool set.

Requirements tailored to what tool set does

well.

31

Rochester Institute of Technology

Causes

Development team is highly proficient with one

toolset.

Several successes with tool set.

Large investment in tool set.

Development team is out of touch with industry.

32

Rochester Institute of Technology

Solution

Organization must commit to exploration of new

technologies

Commitment to professional development of

staff

Defined software boundaries to ease

replacement of subsystems

Staff hired with different backgrounds and from

different areas

Use open systems and architectures

