
Engineering of Software
Subsystems Course Overview

Component

operation

Concrete
Component

operation()

Concrete Dec #1

addedState

operation()

Concrete Dec #2
addedBehavior()

operation()

componentDecorator

operation()

component->operation()

Decorator::operation()
addedBehavior()

2

Up to this point you have only spent a little time
talking about software design in general.

That is about to change because this course is about

Design

3

But we must digress to handle an administrative
matter.

 Do you have an active account in the SE domain?

 Can you login to the machine?

 Do you have access to your section’s myCourses

website 4010-362-xx?

 Can you access the 362 course information on the SE

web server?

http://www.se.rit.edu/~se362

4

By this point you each have some procedure that
you follow to create an object-oriented design.

 What procedure do you follow?

 Go to the ~se362 website schedule for the first class.

Open the Design Process document and capture your

process in one or two sentences for each question.

 Deposit this in the Design Process dropbox.

5

You have learned low-level OOP design in CS
courses and some larger design in SE361.

 CS1 – 3: first principles of OOP

• Find the nouns  objects/state

• Find the verbs  behaviors; methods/functions

• Encapsulation, inheritance

• Programming

 SE361: larger design problem

• Some design principles and trade-offs

• Introduction to design patterns

• Introduction to static and dynamic modeling

6

This course discusses standard patterns of
structure and interaction between classes.

 Standard patterns of structure and interaction

between classes
• Design patterns

 How to apply them to your application
• Deal with subsystems at the higher level of

abstraction provided by the patterns

 What to do when it does not fit exactly
• Evaluate options and analyze the trade-offs

7

At the code level you know some standard
patterns.

 How do you walk through an array in Java?

for (i = 0; i < array.length; i++) {

// use the array element

}

8

Our level of discussion for this course is a small
subsystem of 3 to 10 classes.

 Higher than what we've done before

• Not specific data structures

• Not algorithmic approaches

 Lower than whole architectures or frameworks

• Not financial systems

• Not air-traffic control

• Not J2EE

9

The next level of design requires an awareness of
the principles that underlie “good” designs.

 All engineering is based on principles that have been

learned over time and many applications and some

failures.

 What software design principles have you seen?

 Go to the ~se362 website schedule for the first class.

Open the Two Design Principles document and refresh

your memory by answering the questions.

 Deposit this in the Two Design Principles dropbox.

10

There are some key object-oriented design
concepts that we will stress.

 Increase cohesion where possible

 Decrease coupling where possible

 Behaviors follow data

 Prefer type (interface) inheritance over class

(implementation) inheritance. “Program to the

interface, not the implementation.”

 Prefer composition to inheritance

 Use delegation to “simulate” runtime inheritance.

 Law of Demeter “Only talk to your friends.”

11

What Are Patterns?

Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice.
Christopher Alexander

A pattern is a general solution to a problem in a context

• general -- outline of approach only

• problem -- a recurring issue

• context -- consider the expected design evolution

12

Patterns allow us to gain from the experience,
and mistakes, of others.

 Design for re-use is difficult

 Experienced designers:

• Rarely start from first principles

• Apply a working "handbook" of approaches

 Patterns make this ephemeral knowledge available

to all

 Support evaluation of alternatives at higher level of

abstraction

13

The main classification for Gang-of-Four design
patterns is by purpose of the pattern’s intent.

 Creational: intention is mainly about creating objects

 Structural: intention is mainly about the structural

relationship between the objects

 Behavioral: intention is mainly about the interactions

between the objects

14

A second dimension for classification is binding
time.

 Using inheritance is compile-time binding or class-based

 Using delegation or composition is run-time binding or
object-based

 Creational
• class => defer creation to subclasses
• object => defer creation to another object

 Structural
• class => structure via inheritance
• object => structure via composition

 Behavioral
• class => algorithms/control via inheritance
• object => algorithms/control via object groups

15

This course uses a problem-based learning
methodology.

 Solving problems motivates your learning

 Lecturing is minimal and “on-demand” when requested

by students

 This is better because

• Learner actively engages the material

• Deeper learning when learner motivates need for

knowledge

• More closely resembles true career situation

16

The students were very positive about this
teaching approach.

0

2

4

6

8

10

SA A N D SD

More unsolicited lectures

0
2
4
6
8

10
12

SA A N D SD

I participated more

0

2

4

6

8

10

SA A N D SD

Choose PBL vs. traditional course

0

5

10

15

SA A N D SD

Extend PBL to other courses

0
2
4
6
8

10
12

SA A N D SD

Continue this course in PBL

17

Other than wanting a passive experience the
instructor can help you overcome PBL negatives.

 Negatives expressed or perceived by students

• Thinking is hard

• Making mistakes is discouraging

• Not a passive sport anymore

 Identify needed knowledge

 Initiate requests for additional guidance

• Don’t know enough to know what I don’t know

• Not getting money’s worth from the instructor

18

Success in this course requires a different
strategy than for other courses.

 Keep all work moving forward

• Do not do questions and design serially!

• Questions are due first but …

 Less time is needed to do questions

 If you only work on the questions until they are

due you will never have enough time for the

design and implementation work.

 Work questions and design/implementation

together

 Seek feedback every class

 Bring up the struggles for discussion

 Ask for lectures if that is your learning style

19

Course is divided into units with both individual
and team activities.

 Individual activities

• Unit 1 design activity

• Unit 2, 3, and 4 individual questions

• Unit 2, 3, and 4 quizzes

• Mid-term and final design exam

• Discussion participation

 Team activities for units 2, 3, and 4

• Answers to questions

• Design and implementation exercises

20

Grading is divided into team and individual
components by units.

Component Percentage

Mid-Term Design 10

Final Exam 20

Unit 1 design problem 5

Unit quizzes (2 * 5) 10

Discussion participation 10

Unit questions (3 * 5) 15

Unit design/implementation

exercises (3 * 10)

30

21

We start you off immediately thinking about the
design of a software system.

 This class

• Individually create a design for the stated

problem

• Collaborate with others

 Next class

• Submit individual design at start of class

• Groups of students create a consensus design

• Designs will be presented

• Designs will be compared and contrasted

