
Engineering of Software
Subsystems Course Overview

Component

operation

Concrete
Component

operation()

Concrete Dec #1

addedState

operation()

Concrete Dec #2
addedBehavior()

operation()

componentDecorator

operation()

component->operation()

Decorator::operation()
addedBehavior()

2

Up to this point you have only spent a little time
talking about software design in general.

That is about to change because this course is about

Design

3

But we must digress to handle an administrative
matter.

 Do you have an active account in the SE domain?

 Can you login to the machine?

 Do you have access to your section’s myCourses

website 4010-362-xx?

 Can you access the 362 course information on the SE

web server?

http://www.se.rit.edu/~se362

4

By this point you each have some procedure that
you follow to create an object-oriented design.

 What procedure do you follow?

 Go to the ~se362 website schedule for the first class.

Open the Design Process document and capture your

process in one or two sentences for each question.

 Deposit this in the Design Process dropbox.

5

You have learned low-level OOP design in CS
courses and some larger design in SE361.

 CS1 – 3: first principles of OOP

• Find the nouns objects/state

• Find the verbs behaviors; methods/functions

• Encapsulation, inheritance

• Programming

 SE361: larger design problem

• Some design principles and trade-offs

• Introduction to design patterns

• Introduction to static and dynamic modeling

6

This course discusses standard patterns of
structure and interaction between classes.

 Standard patterns of structure and interaction

between classes
• Design patterns

 How to apply them to your application
• Deal with subsystems at the higher level of

abstraction provided by the patterns

 What to do when it does not fit exactly
• Evaluate options and analyze the trade-offs

7

At the code level you know some standard
patterns.

 How do you walk through an array in Java?

for (i = 0; i < array.length; i++) {

// use the array element

}

8

Our level of discussion for this course is a small
subsystem of 3 to 10 classes.

 Higher than what we've done before

• Not specific data structures

• Not algorithmic approaches

 Lower than whole architectures or frameworks

• Not financial systems

• Not air-traffic control

• Not J2EE

9

The next level of design requires an awareness of
the principles that underlie “good” designs.

 All engineering is based on principles that have been

learned over time and many applications and some

failures.

 What software design principles have you seen?

 Go to the ~se362 website schedule for the first class.

Open the Two Design Principles document and refresh

your memory by answering the questions.

 Deposit this in the Two Design Principles dropbox.

10

There are some key object-oriented design
concepts that we will stress.

 Increase cohesion where possible

 Decrease coupling where possible

 Behaviors follow data

 Prefer type (interface) inheritance over class

(implementation) inheritance. “Program to the

interface, not the implementation.”

 Prefer composition to inheritance

 Use delegation to “simulate” runtime inheritance.

 Law of Demeter “Only talk to your friends.”

11

What Are Patterns?

Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice.
Christopher Alexander

A pattern is a general solution to a problem in a context

• general -- outline of approach only

• problem -- a recurring issue

• context -- consider the expected design evolution

12

Patterns allow us to gain from the experience,
and mistakes, of others.

 Design for re-use is difficult

 Experienced designers:

• Rarely start from first principles

• Apply a working "handbook" of approaches

 Patterns make this ephemeral knowledge available

to all

 Support evaluation of alternatives at higher level of

abstraction

13

The main classification for Gang-of-Four design
patterns is by purpose of the pattern’s intent.

 Creational: intention is mainly about creating objects

 Structural: intention is mainly about the structural

relationship between the objects

 Behavioral: intention is mainly about the interactions

between the objects

14

A second dimension for classification is binding
time.

 Using inheritance is compile-time binding or class-based

 Using delegation or composition is run-time binding or
object-based

 Creational
• class => defer creation to subclasses
• object => defer creation to another object

 Structural
• class => structure via inheritance
• object => structure via composition

 Behavioral
• class => algorithms/control via inheritance
• object => algorithms/control via object groups

15

This course uses a problem-based learning
methodology.

 Solving problems motivates your learning

 Lecturing is minimal and “on-demand” when requested

by students

 This is better because

• Learner actively engages the material

• Deeper learning when learner motivates need for

knowledge

• More closely resembles true career situation

16

The students were very positive about this
teaching approach.

0

2

4

6

8

10

SA A N D SD

More unsolicited lectures

0
2
4
6
8

10
12

SA A N D SD

I participated more

0

2

4

6

8

10

SA A N D SD

Choose PBL vs. traditional course

0

5

10

15

SA A N D SD

Extend PBL to other courses

0
2
4
6
8

10
12

SA A N D SD

Continue this course in PBL

17

Other than wanting a passive experience the
instructor can help you overcome PBL negatives.

 Negatives expressed or perceived by students

• Thinking is hard

• Making mistakes is discouraging

• Not a passive sport anymore

 Identify needed knowledge

 Initiate requests for additional guidance

• Don’t know enough to know what I don’t know

• Not getting money’s worth from the instructor

18

Success in this course requires a different
strategy than for other courses.

 Keep all work moving forward

• Do not do questions and design serially!

• Questions are due first but …

 Less time is needed to do questions

 If you only work on the questions until they are

due you will never have enough time for the

design and implementation work.

 Work questions and design/implementation

together

 Seek feedback every class

 Bring up the struggles for discussion

 Ask for lectures if that is your learning style

19

Course is divided into units with both individual
and team activities.

 Individual activities

• Unit 1 design activity

• Unit 2, 3, and 4 individual questions

• Unit 2, 3, and 4 quizzes

• Mid-term and final design exam

• Discussion participation

 Team activities for units 2, 3, and 4

• Answers to questions

• Design and implementation exercises

20

Grading is divided into team and individual
components by units.

Component Percentage

Mid-Term Design 10

Final Exam 20

Unit 1 design problem 5

Unit quizzes (2 * 5) 10

Discussion participation 10

Unit questions (3 * 5) 15

Unit design/implementation

exercises (3 * 10)

30

21

We start you off immediately thinking about the
design of a software system.

 This class

• Individually create a design for the stated

problem

• Collaborate with others

 Next class

• Submit individual design at start of class

• Groups of students create a consensus design

• Designs will be presented

• Designs will be compared and contrasted

