Engineering of Software
Subsystems Course Overview

Component

operation

A

1

Concrete
Component

Decorator

operation()

operation() q_

-~

1

~

component

BRER component->operation()

Concrete Dec #1

addedState

operation()

Concrete Dec #2

addedBehavior()
operation() 0

Decorator::operation(
addedBehavior()

Software Engineering

Up to this point you have only spent a little time
talking about software design in general.

That is about to change because this course is about

Design

Sof re Engineering

But we must digress to handle an administrative
matter.

= Do you have an active account in the SE domain?
= Can you login to the machine?

= Do you have access to your section’s myCourses
website 4010-362-xx?

= Can you access the 362 course information on the SE
web server?

http://www.se.rit.edu/~se362

Sof re Engineering

By this point you each have some procedure that
you follow to create an object-oriented design.

= What procedure do you follow?

= (Go tothe ~se362 website schedule for the first class.
Open the Design Process document and capture your
process in one or two sentences for each question.

= Deposit this in the Design Process dropbox.

You have learned low-level OOP design in CS
courses and some larger design in SE361.

= CS1 - 3: first principles of OOP
* Find the nouns = objects/state
* Find the verbs = behaviors; methods/functions
 Encapsulation, inheritance
 Programming

= SE361: larger design problem
« Some design principles and trade-offs
* Introduction to design patterns
* Introduction to static and dynamic modeling

eeeeeeeeeeeeeeeeee

This course discusses standard patterns of
structure and interaction between classes.

= Standard patterns of structure and interaction

between classes
* Design patterns

= How to apply them to your application
* Deal with subsystems at the higher level of
abstraction provided by the patterns

= What to do when it does not fit exactly
« Evaluate options and analyze the trade-offs

Sof re Engineering

At the code level you know some standard
patterns.

= How do you walk through an array in Java?

for (i = 0; i < array.length; i++) {
// use the array element

}

Software Engineering

Our level of discussion for this course is a small
subsystem of 3to 10 classes.

= Higher than what we've done before
* Not specific data structures
* Not algorithmic approaches

= | ower than whole architectures or frameworks
* Not financial systems
* Not air-traffic control
 Not J2EE

eeeeeeeeeeeeeeeeee

The next level of design requires an awareness of
the principles that underlie “good” designs.

= All engineering is based on principles that have been
learned over time and many applications and some
failures.

= What software design principles have you seen?

» Gotothe ~se362 website schedule for the first class.
Open the Two Design Principles document and refresh
your memory by answering the guestions.

= Deposit this in the Two Design Principles dropbox.

Sof re Engineering

There are some key object-oriented design
concepts that we will stress.

10

Increase cohesion where possible
Decrease coupling where possible
Behaviors follow data

Prefer type (interface) inheritance over class
(implementation) inheritance. “Program to the
interface, not the implementation.”

Prefer composition to inheritance

Use delegation to “simulate” runtime inheritance.

Law of Demeter “Only talk to your friends.”

Sof re Engineering

What Are Patterns?

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same

way twice.
Christopher Alexander

A pattern is a general solution to a problem in a context
e general -- outline of approach only

e problem -- a recurring issue
e context -- consider the expected design evolution

11

Software Engineering

Patterns allow us to gain from the experience,
and mistakes, of others.

12

Design for re-use is difficult

Experienced designers:
« Rarely start from first principles
* Apply a working "handbook" of approaches

Patterns make this ephemeral knowledge available
to all

Support evaluation of alternatives at higher level of
abstraction

The main classification for Gang-of-Four design
patterns is by purpose of the pattern’s intent.

= Creational: intention is mainly about creating objects

= Structural: intention is mainly about the structural
relationship between the objects

= Behavioral: intention is mainly about the interactions
between the objects

13

A second dimension for classification is binding
time.

= Using inheritance is compile-time binding or class-based

= Using delegation or composition is run-time binding or
object-based

= Creational
 class => defer creation to subclasses
* object => defer creation to another object

= Structural
e class => structure via inheritance
* Oobject => structure via composition

= Behavioral
« class => algorithms/control via inheritance
* object => algorithms/control via object groups

14

Software Engineering

This course uses a problem-based learning
methodology.

= Solving problems motivates your learning

= Lecturing is minimal and “on-demand” when requested
by students

= This is better because
 Learner actively engages the material

* Deeper learning when learner motivates need for
knowledge

 More closely resembles true career situation

15

Software Engineering

The students were very positive about this
teaching approach.

Continue this course in PBL

More unsolicited lectures
10
8 |
6 |
4 |
2 n
0 — : [1]
SA A N D SD
| participated more
12
10 -
8 |
6 |
4 -
21 []
SA A N D SD

16

12

10

8 n

6 n

4 -

2 | A =
SA A N D SD

Extend PBL to other courses

15

10

5 |

O —/ ' —/
SA A N D SD
Choose PBL vs. traditional course

10

8 |

6 |

4 |

2 |

0 i I
SA A N D SD

Software Engineering

Other than wanting a passive experience the
Instructor can help you overcome PBL negatives.

= Negatives expressed or perceived by students
 Thinking is hard
Making mistakes is discouraging
Not a passive sport anymore
+ |dentify needed knowledge
¢+ Initiate requests for additional guidance
Don’t know enough to know what | don’t know
Not getting money’s worth from the instructor

n S

eeeeeeeeeeeeeeeeee

Success in this course requires a different
strategy than for other courses.

= Keep all work moving forward
* Do not do questions and design serially!
* Questions are due first but ...
¢ Less time is needed to do questions
+ |f you only work on the questions until they are
due you will never have enough time for the
design and implementation work.
+ \Work guestions and design/implementation
together

= Seek feedback every class
= Bring up the struggles for discussion
= Ask for lectures if that is your learning style

18

Sof re Engineering

Course is divided into units with both individual
and team activities.

» [ndividual activities

Unit 1 design activity

Unit 2, 3, and 4 individual questions
Unit 2, 3, and 4 quizzes

Mid-term and final design exam
Discussion participation

= Team activities for units 2, 3, and 4
 Answers to questions
 Design and implementation exercises

eeeeeeeeeeeeeeeeee

Grading is divided into team and individual
components by units.

20

Component Percentage

Mid-Term Design 10

Final Exam 20

Unit 1 design problem 5

Unit quizzes (2 * 5) 10

Discussion participation 10
-"_'l'J_ﬁ'it_a_Ll"e_s'ii_d'rTé_(é_*uéi e

Unit design/implementation 30

exercises (3 * 10)

We start you off immediately thinking about the
design of a software system.

= This class

 Individually create a design for the stated
problem

 Collaborate with others

= Next class
« Submit individual design at start of class
 Groups of students create a consensus design
* Designs will be presented
« Designs will be compared and contrasted

21

