
Ø1

Iterator Classification

4010-362
Engineering of Software

Subsystems

2

Iterators are classified along two dimensions.

Location of iteration control

Location of iterator

Control is external to
iterator, i.e. iterator
client has control

Control is internal to iterator,
i.e. iterator has control

Iterator is embedded in
the collection object

Iterator is a separate class
from the collection class

Ø2

3

One iterator characteristic is the location of the
iterator class with respect to the collection class.

§ The iterator definition can be in a class
separate from the collection.
• Good separation of concerns: traversal vs.

maintenance of collection structure
• Multiple traversal types (forward, backward,

matching) without unneeded ones
• Easier to do multiple traversals at the same time

§ The iterator definition can be embedded within
the collection class.
• Preserves encapsulation of collection

4

Who controls iteration when you use the Java
Collections Framework iterators?

§ What is the programming pattern for using the
Java Collection framework iterators?

Iterator iter = theCollection.iterator();

while(iter.hasNext()) {
process(iter.next());

}

This is external control.

Is the iterator separate or embedded?

Ø3

5

Internal iterators require the client to provide a
processing function.

§ Iterator has a function to perform iteration

public interface InternalIterator {
public boolean iterate(Processor p) ;

}

§ Client requests that the iterator iterate through the
collection and process each object

public interface Processor {
public boolean process(Object o) ;

}

6

The client has no iteration control with an internal
iterator except to possibly terminate early.

public class ACollectionIterator implements InternalIterator
{

private SomeCollection theCollection;
public ACollectionIterator(SomeCollection c) {

theCollection = c;
}
public boolean iterate(Processor p) {

boolean result = true;
Start at the beginning of theCollection
while (still elements && result) {

if (! p.process(next element)) {
result = false;

}
Move to the next element

}
return result;

}
}

Ø4

7

Internal Iterators in Ruby

Standard Ruby container classes use an application of internal
iterators:

a = [10, 20, 30]
a.each { |element| puts(“The element is #{element}”)}

outputs:
The element is 10
The element is 20
The element is 30

The each method executes a {code block} on every element of the
array object – control is internal, iterator is embedded.

Arrays – each, each_index, reverse_each
Hash – each (each_pair), each_key, each_value

8

External Iterators in Ruby

IO class external iterator

f = File.open(‘names.txt’)
while not f.eof?

puts(f.readline)
end
f.close

control is external, iterator is embedded

Perfoming the same iteration internally:

f = File.open(‘names.txt’)
f.each { |line| puts(line) }
f.close

also:

f.each_byte { |byte| puts(byte) }

control is internal, iterator is embedded

Ø5

9

Implementing internal iterators in Ruby
You can add similar behavior in your own classes by implementing the each method
and gain additional functionality by including the Enumerable mix-in module.

class Portfolio
include Enumerable

def initialize
@accounts = []

end

def each(&block)
@accounts.each(&block)

end

def add_account(account) # Note: definition of account class not shown here
@account << account

end

end

You can then iterate across Account objects and execute the code block passed in as “&block”.
In this case Portfolio is simply using the each method for the array class, but you could supply
your own iterator for more complex composites.
Enumerable methods use your each method to do things like: any?, find, grep, include?, max,
member?, min, sort

#example – Do any accounts in the portfolio have a balance of a least $2000?

my_portfolio.any? { |account| account.balance > 2000 }

10

There are advantages and disadvantages with
external and internal iterators.

§ External iterators are more flexible
• Example: Compare two lists for equality

§ Internal iterators are easier to use
• Iteration logic handled for client

mailto:@accounts.each(&block)

Ø6

11

Placement of knowledge of how to do traversal
involves trade-offs of O-O design principles.

§ Iterator determines next element

§ Collection determines next element

•Here iterator needs to know structure of collection
•Violates encapsulation of collection if a separate iterator

•Iterator is just a marker/cursor of where traversal left off
•Traversal logic is in the collection even if a separate iterator
•Complicates collection itself
•Does not separate iteration from collection maintenance

12

Recursive collections, such as Composites,
present special problems for iteration.

§ Is programming pattern for Java Collections
framework iterative or recursive?

§ What is the easiest way to traverse a recursive
collection like a tree?

§ Can you traverse it with the other approach?
What are the issues?

Ø7

13

It is easier to iterate through a recursive
collection with an internal iterator.

§ External iterator
• iterator stores path for retreat (Hansel & Gretel)
• composite provides back links for iterator to use

(parent / sibling / children)

§ Internal iterator
• Traverse recursively – get backtrack for free
• Get iterator for children of current element
• Use null iterators at leaves.

