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Lehmann & Belady: Laws of Software Evolution 

1. Continuing Change - Systems must be continually 

adapted else they become progressively less 

satisfactory. 

2. Increasing Complexity - As a system evolves its 

complexity increases unless work is done to 

maintain or reduce it.  
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Refactoring is taking software which through natural 
processes has lost its original clean structure… 
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…and restoring a clean structure. 
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The definitive guide to refactoring is a book by 
Martin Fowler. 

Refactoring: Improving the 

Design of Existing Code 

Martin Fowler, Addison-Wesley, 

1999. 



6 

Refactoring should only change internal structure 
and not observable behavior. 

Refactoring (noun): a change made to the 
internal structure of software to make it easier to 
understand and cheaper to modify without 
changing its observable behavior 
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The design entropy of a software system tends to 
increase over time. 
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If you no longer can see 

the design, how can you 

stay consistent to it? 
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The entropy will increase because of the typical 
development death spiral. 

 Good design up front 

 Local modifications alter the framework 

 Short-term goals win out over structure 

maintenance 

 Engineering sinks into hacking  

 Integrity and structure fade (entropy) 
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A refactoring activity can remove some of that 
design randomness. 
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Refactor or Redo? 

Fix or add a feature, 

and break one (or two)! 
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It is usually hard to counter, “If it ain’t broke, 
don’t fix it.” 

Generally improves product quality 

Pay today to ease work tomorrow. 

May actually accelerate today’s work 
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Ward Cunningham’s Code Debt Metaphor 

Shipping first time code is like going into debt. A little debt 

speeds development so long as it is paid back promptly 

with a rewrite [refactor – ed.]. Objects make the cost of 

this transaction tolerable. 

The danger occurs when the debt is not repaid. Every 

minute spent on not-quite-right code counts as interest on 

that debt. 

Entire engineering organizations can be brought to a 

stand-still under the debt load of an unconsolidated 

implementation, object-oriented or otherwise.  
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Refactoring does not work well as an end task 
because there never is any time to do it. 

 Refactoring should be a continuous code 

improvement activity: 

• If it will make adding a new feature easier. 

• If it will aid with debugging. 

• If it fills a design hole. 

• As a result of code inspection. 

• If it simply makes the code easier to understand. 

 

 Do the right thing now before doing the right thing 

will take too much time…and be too risky! 
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While we are on the subject of doing the 

Right Thing … 
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 Spreads design and implementation knowledge 

through team 

 Helps mentor less experienced developers 

 New eyes see things “old” eyes are not seeing 

 Did your team do any code inspections on your 

implementation? 

• Next time when you can not find that bug, inspect 

don’t debug! 

Code inspections have been found to be the most 
effective technique for early defect detection. 
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 Refactored code may run slower 
• Do you notice? 

• Do you care? 

 Ways to write fast code 
• Strict time budgets  hard real-time 

• Constant attention  optimize always (!?) 
 Write for speed – any and all “parlor” tricks 

 Obscures intentions 

 Harder to upgrade code later 

 Often does not help (80/20 rule) 

• Performance profiling – the intelligent 

engineer’s guide. 

 Make it work.  Make it right.  Make it fast. 

Some complain that all this patterns stuff makes 
the code run slower. 
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If It Stinks, Change It. 
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There are many bad smells that get designed and 
coded into software. 

 Duplicated code 

 Long methods 

 Large classes 

 Long parameter lists 

 Orthogonal purposes 

for a class 

 Shotgun changes 

 Feature envy 

 Data clumping 

 Primitive object 

avoidance 

 Switch statements 

 Type codes 

 Speculative generality 

 Middle man overuse 

 Inappropriate intimacy 

 Data classes 

 Verbose comments 



18 

What can we do with the type code? 

 If type does not effect behavior of 

object but type is shared 
• Replace type code with class 

• This allows type checking where 

data is shared 

 If type effects behavior of object 
• But never changes after 

instantiation 
 Replace type code with subclasses 

• Is modified after instantiation 
 Replace type code with state or 

strategy, as appropriate 

if(type == TYPE_A) { 

    code for TYPE_A … 

} 

else if(type == TYPE_B) { 

    code for TYPE_B … 

} 

else if(type == TYPE_X) { 

    code for TYPE_C … 

} 

else { 

    code for unknown type … 

} 
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Martin Fowler’s book is a cookbook for getting rid 
of smells using common refactoring operations. 

 Extract method 

 Inline method 

 Replace temp with 

query 

 Replace method with 

method object 

 Substitute algorithm 

 Extract class 

 Hide delegate 

 Remove middle man 

 Replace type code 

with class 

 Replace type code 

with state/strategy 

 Replace type code 

with subclasses 

 Introduce parameter 

object 

 Replace inheritance 

with delegation 

 Plus 70 others 

www.refactoring.com 


