

4010-362
Engineering of

Software Subsystems

Refactoring

2

Lehmann & Belady: Laws of Software Evolution

1. Continuing Change - Systems must be continually

adapted else they become progressively less

satisfactory.

2. Increasing Complexity - As a system evolves its

complexity increases unless work is done to

maintain or reduce it.

3

Refactoring is taking software which through natural
processes has lost its original clean structure…

4

…and restoring a clean structure.

5

The definitive guide to refactoring is a book by
Martin Fowler.

Refactoring: Improving the

Design of Existing Code

Martin Fowler, Addison-Wesley,

1999.

6

Refactoring should only change internal structure
and not observable behavior.

Refactoring (noun): a change made to the
internal structure of software to make it easier to
understand and cheaper to modify without
changing its observable behavior

7

The design entropy of a software system tends to
increase over time.

Time

D
e
s
ig

n
 E

n
tr

o
p
y

Design

Design

Design

If you no longer can see

the design, how can you

stay consistent to it?

8

The entropy will increase because of the typical
development death spiral.

 Good design up front

 Local modifications alter the framework

 Short-term goals win out over structure

maintenance

 Engineering sinks into hacking

 Integrity and structure fade (entropy)

9

A refactoring activity can remove some of that
design randomness.

Time

D
e
s
ig

n
 E

n
tr

o
p
y
 Refactoring

Refactor or Redo?

Fix or add a feature,

and break one (or two)!

10

It is usually hard to counter, “If it ain’t broke,
don’t fix it.”

Generally improves product quality

Pay today to ease work tomorrow.

May actually accelerate today’s work

11

Ward Cunningham’s Code Debt Metaphor

Shipping first time code is like going into debt. A little debt

speeds development so long as it is paid back promptly

with a rewrite [refactor – ed.]. Objects make the cost of

this transaction tolerable.

The danger occurs when the debt is not repaid. Every

minute spent on not-quite-right code counts as interest on

that debt.

Entire engineering organizations can be brought to a

stand-still under the debt load of an unconsolidated

implementation, object-oriented or otherwise.

12

Refactoring does not work well as an end task
because there never is any time to do it.

 Refactoring should be a continuous code

improvement activity:

• If it will make adding a new feature easier.

• If it will aid with debugging.

• If it fills a design hole.

• As a result of code inspection.

• If it simply makes the code easier to understand.

 Do the right thing now before doing the right thing

will take too much time…and be too risky!

13

While we are on the subject of doing the

Right Thing …

14

 Spreads design and implementation knowledge

through team

 Helps mentor less experienced developers

 New eyes see things “old” eyes are not seeing

 Did your team do any code inspections on your

implementation?

• Next time when you can not find that bug, inspect

don’t debug!

Code inspections have been found to be the most
effective technique for early defect detection.

15

 Refactored code may run slower
• Do you notice?

• Do you care?

 Ways to write fast code
• Strict time budgets  hard real-time

• Constant attention  optimize always (!?)
 Write for speed – any and all “parlor” tricks

 Obscures intentions

 Harder to upgrade code later

 Often does not help (80/20 rule)

• Performance profiling – the intelligent

engineer’s guide.

 Make it work. Make it right. Make it fast.

Some complain that all this patterns stuff makes
the code run slower.

16

If It Stinks, Change It.

17

There are many bad smells that get designed and
coded into software.

 Duplicated code

 Long methods

 Large classes

 Long parameter lists

 Orthogonal purposes

for a class

 Shotgun changes

 Feature envy

 Data clumping

 Primitive object

avoidance

 Switch statements

 Type codes

 Speculative generality

 Middle man overuse

 Inappropriate intimacy

 Data classes

 Verbose comments

18

What can we do with the type code?

 If type does not effect behavior of

object but type is shared
• Replace type code with class

• This allows type checking where

data is shared

 If type effects behavior of object
• But never changes after

instantiation
 Replace type code with subclasses

• Is modified after instantiation
 Replace type code with state or

strategy, as appropriate

if(type == TYPE_A) {

 code for TYPE_A …

}

else if(type == TYPE_B) {

 code for TYPE_B …

}

else if(type == TYPE_X) {

 code for TYPE_C …

}

else {

 code for unknown type …

}

19

Martin Fowler’s book is a cookbook for getting rid
of smells using common refactoring operations.

 Extract method

 Inline method

 Replace temp with

query

 Replace method with

method object

 Substitute algorithm

 Extract class

 Hide delegate

 Remove middle man

 Replace type code

with class

 Replace type code

with state/strategy

 Replace type code

with subclasses

 Introduce parameter

object

 Replace inheritance

with delegation

 Plus 70 others

www.refactoring.com

