
ABSTRACT
Software architectures, like complex designs in any field,
embody tradeoffs made by the designers. However, these
tradeoffs are not always made explicitly by the designers and
they may not understand the impacts of their decisions. This
paper describes the use of a scenario-based and model-based
analysis technique for software architectures—called
ATAM—that not only analyzes a software architecture with
respect to multiple quality attributes, but explicitly considers
the tradeoffs inherent in the design. This is a method aimed
at illuminating risks in the architecture through the
identification of attribute trends, rather than at precise
characterizations of measurable quality attribute values. The
ATAM is illustrated in this paper via an example where we
analyzed a U.S. Army system for battlefield management.

Keywords
Architecture analysis, quality attribute models, architectural
styles

1 WHY ARCHITECTURE TRADEOFF ANALYSIS?
At the Software Engineering Institute (SEI), we have been
performing architectural analyses for the past 5 years,
initially using the SAAM (Software Architecture Analysis
Method) [6] and, more recently, using the ATAM
(Architecture Tradeoff Analysis Method) [7]. The ATAM,
like the SAAM, is a scenario-based method. However,
unlike the SAAM, the ATAM focuses on multiple quality
attributes (currently modifiability, availability, security, and
performance) and is aimed at locating and analyzing
tradeoffs in a software architecture, for these are the areas of
highest risk in an architecture. 

We have developed a method so that the analysis is
repeatable and transitionable. Having a structured method
helps ensure that the right questions regarding an
architecture will be asked early, during the requirements and
design stages when discovered problems can be solved
cheaply. It guides users of the method—the stakeholders—to
look for conflicts and for resolutions to these conflicts in the
software architecture. 

In the past much of software engineering practice has paid
lip-service to quality attributes in designing software
architectures, but has done little to ensure that these quality
attributes are satisfied by the design. Recent efforts on
cataloguing the implications of using design patterns and
architectural styles contribute, frequently in an informal way,
to ensuring the quality of a design [4]. More formal efforts
also exist to ensure that quality attributes are addressed.
These consist of analyses in areas such as performance
evaluation [8], Markov modeling for availability [5], and
inspection and review methods for modifiability [6]. 

But these techniques, if they are applied at all, are typically
applied in isolation and their implications are considered in
isolation. This is dangerous. It is dangerous because all
design involves tradeoffs and if we simply optimize for a
single quality attribute, we stand the chance of ignoring
other attributes of importance. Even more significantly, if we
do not analyze for multiple attributes, we have no way of
understanding the tradeoffs made in the architecture—places
where improving one attribute causes another one to be
compromised. 

It is important to clearly state what the ATAM is and is not.
The ATAM is meant to be a risk mitigation method; a means
of detecting areas of potential risk within the architecture of
a complex software intensive system. This has several
implications: 1) the ATAM can be done early in the software
development life cycle; 2) it can be done inexpensively and
quickly (because it is assessing architectural design
artifacts); 3) it does not need to produce detailed analyses of
any measurable quality attribute of a system (such as latency
or mean time to failure) to be successful but instead
identifies trends where some architectural parameter is
correlated with a measurable quality attribute of interest.
This final point is crucial in understanding the goals of the
ATAM; we are not interested in precisely characterizing any
quality attribute. That would be pointless at an early stage of
design. What we are interested in doing—in the spirit of a
risk mitigation activity—is learning where an attribute of
interest is affected by architectural design decisions, so that
we can reason carefully about those decisions, model them
more completely in subsequent analyses, and devoted more
of our design, analysis, and prototyping energies on such
decisions.

This paper will describe the method (more details can be
found in [1] and [7]), will present an example analysis, and

Experience with Performing Architecture Tradeoff Analysis

Rick Kazman, Mario Barbacci, Mark Klein, S. Jeromy Carrière
Software Engineering Institute, Carnegie Mellon University

Pittsburgh, PA, U.S.A. 15213

+1-412-268-1588
{kazman, mrb, mk, sjc}@sei.cmu.edu



will discuss the implications of the ATAM.

2 ATAM STEPS
The steps of the method are as follows:

• Step 0 - Planning/Information exchange: in this step we
hold a meeting where we describe the method to the
stakeholders, set expectations, learn about the stakehold-
ers’ main quality goals for the system, and see the archi-
tect’s initial presentation of the architecture and initial set
of scenarios.

• Step 1 - Scenario brainstorming: This step begins the
ATAM proper. We gather the important system stake-
holders and facilitate the brainstorming of scenarios of
uses of the system, faults of the system, and anticipated
changes to the system. During this phase the analysts add
or augment the scenarios based upon the quality
attributes under review, their experience, and their need
for additional insight into the architecture.

• Step 2 - Architecture presentation: the architecture is pre-
sented in detail and the most important and illustrative
normal usage scenarios are mapped onto the architecture,
to aid in understanding the system and, in particular, how
data and control flow through it. The analysts attempt to
identify and probe the ramifications of architectural
styles here.

• Step 3 - Scenario coverage checking: we use a set of
standard quality attribute-specific questions to ensure
proper coverage of an attribute by the scenarios. In par-
ticular, we look to see if boundary conditions have been
covered.

• Step 4 - Scenario grouping and prioritization: the stake-
holders vote on the scenarios that are of highest concern
for them. During this phase they can suggest grouping
scenarios. After the voting is complete, we determine a
cutoff point at 10-15 scenarios.

• Step 5 - Map high priority scenarios onto architecture: in
this step the architect walks through each high-priority
attribute specific scenario, showing how it affects the
architecture (e.g. for modifiability) and how the architec-
ture responds to it (e.g. for quality attributes such as per-
formance, security and availability).

• Step 6 - Perform quality attribute-specific analysis: the
architect guides the analysis showing why the architec-
ture meets the attribute-specific requirements, as illumi-
nated by the scenarios of interest. The analysts build
models of each quality attribute based upon the archi-
tect’s information. By systematically manipulating the
input parameters to the model, the analysts determine
sensitivity points—parameters in the architecture to
which some measurable quality attribute is highly corre-
lated—are determined. In this way, the architectural
parameters or elements to which this scenario is sensitive
are identified. For example, if end-to-end latency is
highly sensitive to the size of a queue, the queue’s size is
noted as an architectural sensitivity point. 

During this step, the analysts may discover that the exist-
ing architecture is inadequate. As a consequence, archi-
tectural alternatives may be suggested, and these will

feed into the action plan developed in step 8.

• Step 7 - Identify trade-off points: to find tradeoffs we
locate all important architectural elements in which mul-
tiple sensitivities exist. For example, the number of cop-
ies of a database might be a sensitivity point for both
availability and performance.

• Step 8 - Consolidate findings and develop action plan:
this plan is a set of recommendations for improving the
architecture in the light of the analysis findings. Addi-
tionally, we might ask for more supporting documenta-
tion such as: more architectural information, scenarios,
environmental information, platform information,
details about constraints, or justification for require-
ments.

After step 8 we might decide to modify the architecture,
which necessitates a return to step 1, wherein we analyze the
consequences of our decisions. Typically step 0 takes place
on a single day, steps 1 through 4 take place on a second day,
and steps 5 through 8 take place on a third day. The impact
on the project team being analyzed is small—typically from
10 to 40 person days of their time in projects that measure
from 10 to 200 person years.

In addition to these steps, we are developing a handbook at
the SEI:1 a set of materials that accompanies the evaluation
that describe many of the evaluation artifacts. For example,
we have a handbook section that describes attribute based
architectural styles (ABASs)—styles that are focussed on
addressing performance, modifiability, security, and
availability along with accompanying analytical
frameworks. We also have a handbook section, that is used
heavily in steps 3 and 6, with a set of quality attribute-
specific questions that aid us in probing the architecture. For
example, when building a performance model of some
portion of the system, we ask questions such as the following
to elicit more information about a scenario:

• What event starts the scenario. For example, is it a mes-
sage arrival, keystroke, mouse click, state change, the
passage of time,...?

• How often does this initiating event occur (e.g. periodi-
cally with a fixed rate, stochastically with a known
mean)?

• What is the performance requirement (e.g. hard deadline,
soft deadline, throughput, average-case response time)?
Quantify if possible (e.g. hard deadline of 100 ms).

• What is the consequence of not meeting the performance
requirement (e.g. catastrophe, inconvenience, annoyance,
system failure and reboot).

By following a standard set of quality-specific questions, we
elicit the information needed to analyze that quality in a
predictable, repeatable fashion [10]. In addition to attribute-
specific elicitation questions we have a set of questions that
aid us in gathering the information needed to build an

1. The ATAM web site—http://www.sei.cmu.edu/ata/ata_init.html—
contains additional background materials on performing these evalua-
tions.



analytic model of the quality. For example, in gathering
performance information we elicit information about
resource usage and contention: the raw data needed to build
an analytic performance model [8]. 

3 THE RATIONALE FOR ATAM
The ATAM is a spiral model [3] of design and analysis; in
our view one cannot be done without the other. A design is
what you analyze and an analysis tells you how to go about
refining a design. Thus, this process is not simply a front-end
gate that a system passes through on its journey from
requirements to fielded system. Analyses must live with a
design throughout a system’s lifetime, so that the system is
built appropriately and maintained correctly. In addition, the
ATAM helps drive design: it identifies areas of risk and helps
to plan for risk mitigation. It also drives the documentation
of the architecture, as we will show in our example. 

The ATAM draws its inspiration and techniques from three
areas: the Software Architecture Analysis Method (SAAM)
[6], quality attribute communities, and the notion of
architectural styles [11]. The ATAM is intended to analyze
an architecture with respect to its quality attributes, not its
functional correctness. Although this is the ATAM’s focus,
there is a problem in operationalizing this focus: we (and the
software engineering community in general) do not
understand quality attributes well: what it means to be
“open” or “interoperable” or “secure” or “high performance”
changes from system to system and from community to
community. So, we turn to scenarios as a means of
operationalizing the analysis of quality attributes. The focus
of the SAAM is the use of scenarios for architectural
modifiability evaluation. Scenarios provided a vehicle for
concretizing modifiability; they represent specific examples
of current and future uses of a system. The future uses
typically imply modifications against which the architecture
can be assessed, thereby transforming the abstract notion of
modifiability into concrete modification scenarios. 

Performing the ATAM has taught us that scenarios are also
the driving force in understanding run-time qualities (such as
performance or availability). This is because scenarios
specify the kinds of operations over which performance
needs to be measured, or the kinds of failures the system will
have to withstand. 

The ATAM also builds on the knowledge bases associated
with quality attributes. We organize this knowledge into
what we call attribute models. We augment scenarios with
attribute-centric questions such as those shown in the
previous section, based upon an analytic model of each
quality attribute. Building and analyzing an attribute model
helps to answer the following three questions: 1) What are
the measurable or observable manifestations of the attribute?
2) What are the attribute-relevant stimuli or events to which
the architecture must respond? 3) What are the
characteristics of the architecture that affect the observable
manifestation?

Finally, the ATAM builds on the concept of architectural
styles [11]. “An architectural style is a description of
component types and a pattern of their run-time control and/

or data transfer. A style can be thought of as a set of
constraints on an architecture—constraints on component
types and their interactions—and these constraints define a
set or family or architectures that satisfy them” [2]. The
ATAM uses a particular specialization of architectural styles,
ABASs. 

An ABAS is an architecture style in which the constraints
focus on component types and patterns of interaction that are
particularly relevant to quality attributes such as
performance, modifiability, security or availability. ABASs
aid architecture evaluation by focusing the stakeholders’
attention on the patterns that dominate the architecture. This
focus is accomplished by highlighting the attribute-specific
questions associated with the pattern, and by placing the
answers to these questions into an analytic framework. For
example, if an architecture used a collection of interacting
processes, this could be recognized as a performance ABAS.
The questions associated with this performance ABAS
would probe important architectural parameters such as the
priority of the processes, estimates of their execution time,
places where they synchronize, queuing disciplines, etc.;
information that relevant to understanding the performance
of this style. The answers to these questions then feed into an
explicit analytic framework such as rate monotonic analysis
for performance [8].

4 AN EXAMPLE EVALUATION: THE BCS
We have now performed 5 ATAM-based evaluations (2
internal and 3 external). The example that we are presenting
has had some of the details changed to protect the identity
and intellectual property of the customer and contractor, but
the architectural issues that we uncovered are not materially
affected by these changes.

We shall call the system BCS (Battlefield Control System).
This system is to be used by Army battalions to control the
movement, strategy, and operations of troops in real time in
the battlefield. This system is currently being built by a
contractor, based upon government furnished requirements.
These state that there is a Commander who commands a set
of Soldiers and equipment, including many different kinds of
weapons and sensors. The system needs to interface with
numerous other systems that feed it commands and
intelligence, and collect its status with respect to its
missions. 

Step 0 - Planning/Information Exchange
During the initial “pre-meeting” we presented the method,
the contractor presented the architecture, and the contractor
and customer described their initial set of scenarios. As a
result of this meeting additional architectural documentation
was requested. As is often the case in evaluating
architectures, the initial documentation that was produced
was far too vague to support any analysis, consisting of high
level data flows and divisions of functionality that had no
clear realization in software. Thus, additional information
was requested, in the form of questions, to address the gaps
in the original documentation produced by the contractor:

• what is the structure of the message handling software
(i.e. how the functionality is broken down in terms of



modules, functions, APIs, layers, etc.)?

• what facilities exist in the software architecture (if any)
for self-testing and monitoring of software components?

• what facilities exist in the software architecture (if any)
for redundancy, liveness monitoring, failover, and how
data consistency is maintained (so that one component
can take over from another and be sure that it is in a con-
sistent state with the failed component)?

• what is the process and/or task view of the system,
including mapping of these processes/tasks to hardware
and the communication mechanisms between them?

• what functional dependencies exist among the software
components (often called a “uses” view)?

• what data is kept in the database (which was mentioned
by one of your stakeholders), how big it is, how much it
changes, and who reads/writes it?

• what is the anticipated frequency and volume of data
being transmitted among the system components? 

Between the first and second days of the evaluation the
contractor answered many of these questions and produced
substantially more complete, more usable architectural
documentation. This formed the basis for scenario mapping
and evaluation in the next steps of the ATAM.

Step 1 - Scenario Brainstorming
A scenario represents a use of—a stimulus to—the BCS
architecture, applied not only to determine if the architecture
meets a functional requirement, but also (and more
significantly) for prediction of system qualities such as
performance, availability, modifiability, and so forth. Direct
scenarios are those that are satisfied by the architecture
through the execution of the system. Direct scenarios that
correspond to requirements previously addressed in the
design process will not be surprising to the stakeholders, but
will increase their understanding of the architecture and
allow systematic investigation of architectural qualities such
as performance and availability. An indirect scenario is one
that requires a modification to the architecture to satisfy it;
indirect scenarios are central to the measurement of the
degree to which an architecture can accommodate
evolutionary changes that are important to the stakeholders.
The cumulative impact of indirect scenarios on an
architecture measure its suitability for ongoing use
throughout the lifetime of a family of related systems.

The scenario elicitation process allows stakeholders to
contribute scenarios that reflect their concerns and
understanding of how the architecture will accommodate
their needs. A particular scenario may, in fact, have
implications for many stakeholders: for a modification, one
stakeholder may be concerned with the difficulty of a change
and its performance impact, while another may be interested
in how the change will affect integrability of the architecture.

Scenarios were collected by a round-robin brainstorming
activity in which no criticism and little or no clarification
was provided. Table 1 shows a few of the 40 scenarios that

were elicited in the first day of the ATAM evaluation2. 

Step 2 - Architecture Presentation
As mentioned above, the architectural documentation
covered several different views of the system: a dynamic
view, showing how subsystems communicated; a set of
message sequence charts, showing run-time interactions; a
system view, showing how software was allocated to
hardware; and a source view, showing how components and
subsystems were composed of objects. For the purpose of
this presentation, we will just show the highest level system

2. These scenarios have been cleansed of proprietary specifics, but their
spirit is true to the original.

Table 1: Sample Scenarios for the BCS Evaluation

Sce-
nario

Scenario Description

 1 Same information presented to user, but different
presentation (location, fonts, sizes, colors, etc.).

 2 Additional data requested to be presented to user.

 3 User requests a change of dialog. 

 4 An new device is added to the network, e.g. a loca-
tion device that returns accurate GPS data.

 5 An existing device adds additional fields that are
not currently handled to existing messages. 

6 Map data format changes.

7 The time budget for initialization is reduced from 5
minutes to 90 seconds.

8 Modem baud rate is increased by a factor of 4. 

9 Operating system changes to Solaris.

10 Operating schedule is unpredictable.

11 Can a new schedule be accommodated by the OS?

12 Change the number of Soldier nodes from 25 to 35.

13 Change the number of simultaneous missions from
3 to 6.

14 A node converts from being a Soldier/client to
become a Commander/server.

15 Incoming message format changes.



view of the architecture, using the notation from [2].3

This system architecture, shown in Figure 1, illustrates that
the Commander is central to the system; it acts as a server
and the Soldier nodes are its clients, making requests of it
and updating the server’s database with their status.
Interaction between the client and server is only through
encrypted messages sent via a radio modem; neither
subsystem controls the other. Note also that the radio modem
is a shared communication channel: only one node can be
broadcasting at any moment.

Step 3 - Scenario Coverage Checking
At this stage in the analysis we had a set of architectural
documentation but little insight into the way that the
architecture worked to accomplish the BCS’s mission. So we
used a set of quality-attribute specific questions from our
handbook to flesh out our understanding of the architecture.
These questions probed both the normal operation of the
system and its boundary conditions. For example:

• For what functions of the system is performance not
important?

• For those functions for which performance is not impor-
tant what is the consequence of extremely long response
times or extremely low throughput?

• How is performance impacted by scaling up the work-
load?

By itself, Figure 1 tells us little about the system. However,
when illuminated by a small number of scenarios and
attribute-specific questions, this view became the focus for
availability (or, in the customer’s terms survivability) and
performance analyses. 

The next step in the ATAM was to select scenarios for more
detailed consideration.

3. In this notation, rectangles represent processors and dashed lines repre-
sent data flow.

Step 4 - Scenario Grouping and Prioritization
Some of the scenarios presented in Table 1 have obvious
commonalities. The goal of the next step—scenario
grouping—is to identify related scenarios, where “related”
means that the scenarios are expected to have similar effects
on the architecture. 

Scenario groups were proposed and defended by the BCS
stakeholders. Prioritization of the grouped scenarios allows
the most important scenarios to be addressed within the
limited amount of time (and energy) available for the
evaluation. Here, “important” is defined entirely by the
stakeholders. The prioritization is accomplished by giving
each stakeholder a fixed number of votes; 30% of the total
number of scenarios has been determined to be a useful
heuristic. Thus, for the BCS, each stakeholder was given 12
votes that they use to vote for scenarios in which they were
most interested. A stakeholder may allocate as many or as
few votes as they wish to each scenario. Typically, the
resulting totals will provide an obvious cutoff point; 10-15
scenarios are the most that can be considered in a normal
one-day session; for the BCS a natural cutoff occurred at 12
scenario groups. Some negotiation is appropriate in choosing
which scenarios to consider; a stakeholder with a strong
interest in a particular scenario can argue for its inclusion,
even if it did not receive a large number of votes in the initial
prioritization.

Step 5 - Map High Priority Scenarios Onto Architecture
In the ATAM process, once a set of scenarios has been
chosen for consideration, these scenarios are “mapped” onto
the architecture. In the case of a scenario that implies a
change to the architecture, the architect demonstrates how
the scenario would affect the architecture in terms of the
changed, added, or deleted components, connectors, and
interfaces. For the case in which the architecture, as
designed, is able to “execute” the scenario, the architect
traces this execution path through the relevant components
and connectors. 

Stakeholder discussion is important here to elaborate the
intended meaning of a scenario description and to discuss
how the mapping is or is not suitable from their perspective.
The mapping process also illustrates weaknesses in the
architecture and its documentation.

For the BCS, each of the high priority scenarios was mapped
onto the appropriate architectural view. For example, when a
scenario implied a modification to the architecture, the
ramifications of the change were mapped onto the source
view, and scenario interactions were identified as sensitivity
points. For availability and performance, failure and usage
scenarios were mapped onto run-time and system views of
the architecture, and models were built of latency and
availability based upon the information elicited by these
mappings.

Step 6 - Perform Quality Attribute Specific Analysis
A sensitivity point for an attribute is defined as a parameter
in the architecture to which some measurable attribute is
highly correlated; small changes in such parameters are
likely to have significant effects on the measurable behavior

Soldier

Commander

Soldier

Soldier

Soldier

Soldier

Soldier

Soldier

Soldier

. . .

Figure 1: System Architecture of the BCS

to external
Command
and Control 
systems



of the system. For this reason we must focus our attention on
these points as they pose the highest risks to the system’s
success, particularly as the system evolves. 

We find sensitivity points by building models of a quality
attribute. We build a collection of formal analytic models
such as RMA models for performance, and Markov models
for availability, and informal models such as that used in
SAAM for modifiability. These models are frequently quite
simple initially. Once we build these models we experiment
with their parameters until we determine which ones have
substantial effects on a measurable attribute such as latency
or throughput or mean time to failure. The point of the model
building is twofold: to find sensitivity points (not to
precisely characterize a measurable attribute, for it is
typically too early in the development process to do this with
any rigor); and to gain insight into the architecture, via the
elicitation process that model building requires.

For the BCS system we realized through the ATAM process
that three quality attributes were the major architectural
drivers for overall system quality: availability, modifiability,
and performance. Hence we can say that system quality
(QS), is a function f of the quality of the modifiability (QM),
the availability (QA), and the performance (QP):

QS = f(QM, QA, QP)

The next sections will describe the analyses of each of these
qualities.

Availability 
A key quality attribute for the BCS was determined to be its
steady-state availability, i.e. 

QA = g(the fraction of time that the system is working)

The system is considered to be working if there is a working
Commander and any number of Soldier nodes. When the
Commander fails the system has failed. Provisions have
been made in the BCS architecture, however, to turn a
Soldier into a Commander, i.e. converting a client into a
server. The repair time for the system is the time to turn a
Soldier node into the Commander and thus restore the
system to operation. Failure of the Commander is detected
via human-to-human communication.

As identified by our scenarios, the key stimulus to model for
the system is the failure of a node (Commander or Soldier
node) in the system due to an attack, hardware failure, or
software failure. The architecture for BCS currently
statically specifies an Commander and a single backup
selected from among the Soldier nodes, as indicated by the
shaded Soldier node in Figure 1. In the existing design
acknowledged communication takes place between the
Commander and the backup Soldier node to allow the
backup to maintain a state of readiness in case of failure of
the Commander. Upon failure of the Commander, the backup
takes over as Commander, converts from being a client to a
server (as indicated by Scenario 14). In particular, there is no
provision to have one of the surviving Soldier nodes
promoted to become the current backup. So, we can refine
our characterization of the system’s availability as follows:

QA = g(λC, µC, µB)

That is, system availability is primarily affected by the
failure rate of the Commander (λC), the repair rate of the
Commander (µC, the time required to turn the backup into
the Commander). The availability might also be affected by
the repair rate of the backup, but in the BCS as it is currently
designed, the repair rate of the backup (µB) is 0 since there
is no provision for creating additional backups.

However, by building a simple model of the system’s
availability, we can determine the effects on the system of
changing the repair rate of the backup. Specifically, we can
determine the amount of time required for a new backup to
enter a readiness state (i.e. where it could quickly become
the Commander). This would require a change to the
architecture.

An alternative architecture could allow multiple (perhaps all)
Soldier nodes to monitor the Commander-to-backup
communication and thus maintain a higher level of
readiness. And these additional backups could either
acknowledge communication with the Commander
(requesting resends of missed packets) or could be silent
receivers of packets, or some mixture of these schemes (i.e.
the top n backups acknowledge receipt of packets, and the
remaining m backups are passive). In the case where packets
are not acknowledged, the state of the backups database
would increasingly drift from that of the Commander and if
one of these backups is called upon to become the
Commander, it would need to engage in some negotiation
(with the external systems and/or the other Soldier nodes) to
complete its database.

Thus, there are three considerations for changing the BCS
architecture to improve the data distribution to the backups:

• a backup could be an “acknowledging backup”, which is
kept completely synchronized with the Commander

• a backup might be only a “passive” backup and not ask
for re-sends when it misses a message; this implies that it
has the means for determining that it has missed a mes-
sage (such as a message numbering scheme)

• a backup, when it becomes the new Commander, or when
it becomes an “acknowledging backup”, could request
any missed information from the upper level Command
and Control systems and/or the other Soldier nodes. 

The system does not need to choose a single option for its
backups. It might have n acknowledging backups and m
passive backups. Assuming that we have no control over the
failure rate of the Commander, then the true sensitivities in
this system with respect to availability are functions of the
repair rates of the Commander and backups, which are
themselves functions of the numbers of acknowledging and
passive backups. Now we have a usable description of the
architectural sensitivities—a correlation between some
architectural parameter and a measurable attribute:

QA = g(n, m)

What are the issues in the choice of the number of backups to
keep and whether they acknowledge communications or not?



We consider this issue in terms of the failure and recovery
rates of the system under the various options. Clearly, the
availability of the system increases as the number of backups
is increased, because the system can survive multiple
failures of individual nodes without failing its mission. The
availability of the system is also increased by increasing the
number of acknowledging backups, for two reasons: 1)
acknowledging backups can be ready to assume the
responsibilities of an Commander much more quickly,
because they do not need to negotiate with other nodes for
missed information, and; 2) having more acknowledging
backups means that there will not be an identifiable
communication pattern between the Commander and the
single backup, as there is currently, which means that the
probability of two accurate incoming mortars disabling the
system is reduced. 

However, as the number of acknowledging backups is
increased, the performance of the system is impacted, as
each of these acknowledgments incurs a small
communication overhead. Collectively, this overhead is
significant, because as we will discuss next, communication
latency is the major contributor to overall system latency for
BCS.

Performance 
By building a simple performance model of the system and
varying the input parameters to the model (the various
processing times and communication latencies), it became
clear that the slow speed of radio modem communication
between the Commander and the Soldiers (9600 baud) was
the single important performance driver for the BCS. The
performance measure of interest—average latency of client-
server communications—was found to be insensitive to all
other architectural performance parameters (e.g. the time for
the system to update its database, or to send a message
internally to a process, or to do targeting calculations). But
the choice of modem speed was given as a constraint, and so
our performance model was focused on capturing those
architectural parameters that affected message sizes and
distributions.

We begin by identifying the scenarios, from among all those
considered, that have performance implications and the
communication requirements implied in each scenario. For
example, we considered three scenario groups (not all of
which appear in Table 1) when building our performance
model:

A) Scenarios 14, 23, 25, 29 (turning a Soldier node into a 
backup): a switchover requires that the backup acquires 
information about all missions, updates to the environ-
mental database, issued orders, current Soldier locations 
and status, and detailed inventories from the Soldiers.

B) Scenarios 26, 27 (regular, periodic data updates to the 
Commander): various message sizes and frequencies.

C) Scenarios 13, 20: Increasing number of weapons from 
30 to 60 or missions from 3 to 6.

We created performance models of each of these scenario
groups. For the purposes of illustration in this paper, we will

only present the performance calculations for scenario group
A), the conversion from Soldier backup to Commander.

After determining that a switchover is to take place the
Soldier backup will need to download the current mission
plans and environmental database from the external
command and control systems. In addition, the backup needs
the current locations and status of all of the remaining
Soldiers, inventory status from the Soldiers, and the
complete set of issued orders.

A typical calculation of the performance implications of this
scenario group will take into account the various message
sizes needed to realize the scenario, the 9600 baud modem
rate (which we equate to 9600 bits/second), and the fact that
there are a maximum of 25 Soldiers per Commander (but
since one is now being used as a Commander, the number of
Soldier nodes in these calculations is 24):

Downloading mission plans: 
280 Kbits / 9.6 Kbits/second ≅ 29.17 seconds.

Updates to environmental database:
66 Kbits / 9.6 Kbits/second ≅ 6.88 seconds.

Acquiring issued orders: 
24 Soldiers * (18 Kbits/9.6 Kbits/second) = 45.0 seconds.

Acquiring Soldier locations and status: 
24 Soldiers * (12 Kbits/9.6 Kbits/second) = 30.0 seconds.

Acquiring inventories: 
24 Soldiers * (42 Kbits/9.6 Kbits/second) = 105.0 sec-
onds.

Total ≅ 216.05 seconds for Soldier to become backup

Note that, since the radio modem is a shared communication
channel, no other communication can take place while a
Soldier/backup is being converted to a Commander. 

There was no explicit requirement placed on the time to
switch from a Commander to a backup. However, there was
an initialization requirement of 300 seconds which we will
use in lieu of an explicit switchover time budget. If we
assume that the 280K bits in the mission plan file contains
the 3 missions in the current configuration, then doubling the
number of missions (scenario 13) would imply doubling the
mission message from 280K bits to 560K bits and the
transmission time would increase by almost 30 seconds, still
meeting the time budget. If, on the other hand, the number of
Soldiers increases to 35 (scenario 12), the total time will
increase by about 90 seconds, which would not meet the
time budget. 

Keeping each backup in a state of high readiness requires
that they become acknowledging backups, or for a lower
state of readiness they can be kept as passive backups. Both
classes of backups require periodic updates from the
Commander. From an analysis of scenario group B), we have
calculated that these messages average 59,800 Kbits every
10 minutes. Thus, to keep each backup apprised of the state
of the Commander requires 99.67 bits/second, or
approximately 1% of the system’s overall communication



bandwidth. Acknowledgments and resends for lost packets
would add to this overhead. Given this insight, we can
characterize the system’s performance sensitivities as
follows:

QP = h(n, m, CO)

That is, the system is sensitive to the number of
acknowledging backups (n), passive backups (m), and other
communication overhead (CO). The main point of this
simple analysis is to realize that the size and number of
messages to be transmitted over the 9600 baud radio modem
is important with respect to system performance and hence
availability. Small changes in message sizes, or frequencies
can cause significant changes to the overall throughput of the
system. These changes in message sizes may come from
changes imposed upon the system

Modifiability 
Scenarios 1, 2, 3, 5, 6, and 31 were mapped onto a source
view of the architecture to understand their implications.
One component of the architecture appeared—Message
Manager—appeared to have a high level of scenario
interaction. What this means is that the satisfaction of many
different indirect scenarios (in this case scenarios 2, 3, 5, 6,
and 31, which together represent almost half of the indirect
scenarios that we considered) required a modification to the
Message Manager. While this does not, in itself, prove that
there is a problem with Message Manager, it does indicate
that this component will potentially be a sensitivity point in
the architecture: a location of many changes and hence of
high potential complexity. 

Step 7 - Identify Tradeoff Points
We have identified three sensitivities in the BCS system, and
two of these are affected by the same architectural
parameter: the amount of message traffic that passes over the
shared communication channel employed by the radio
modems, as described by some functions of n and m, the
numbers of acknowledging and passive backups. Recall that
availability and performance were characterized as:

QA = g(n, m)

and

QP = h(n, m, CO)

These two parameters control the tradeoff point between the
overall performance of the system, in terms of the latency
over its critical communication resource, and between the
availability of the system in terms of the number of backups
to the Commander, the way that the state of those backups is
maintained, and the negotiation that a backup needs to do to
convert to a Commander. To determine the criticality of the
tradeoff more precisely, we can prototype or estimate the
currently anticipated message traffic and the anticipated
increase in message traffic due to acknowledgments of
communications to the backups. In addition, we would need
to estimate the lag for the switchover from Soldier to
Commander introduced by not having acknowledged
communication to the Solder backup nodes. Finally, all of
this increased communication needs to be considered in light
of the performance scalability of the system (since

communication bandwidth is the limiting factor here).

One way to mitigate against the communication bandwidth
limitation is to plan for new modem hardware with increased
communication speeds. Presumably this means introducing
some form of indirection into the modem communications
software—such as an abstraction layer for the
communications—if this does not already exist. This
possibility was not probed during the evaluation.

While this tradeoff might seem obvious, given the
presentation here, it was not so. The contractor was not
aware of the performance and availability implications of the
architectural decisions that had been made. In fact, in our
initial pre-meeting, not a single performance or availability
scenario was generated by the contractor; these simply were
not among their concerns. The contractor was worried about
the modifiability of the system, in terms of the many changes
in message formats that they expected to withstand over the
BCS’s lifetime. However, the identified tradeoff affected the
very viability of the system. If this tradeoff was not carefully
reasoned about, it would affect the system’s ability to meet
its most fundamental requirements.

5 RESULTS OF THE BCS ATAM
The ATAM that we performed on the architecture for the
BCS revealed some potentially serious problems in the
documentation of the architecture, the clarity of its
requirements, its performance, its availability, and a potential
architectural tradeoff. We will briefly summarize each of
these problems in turn.

Documentation
The documentation provided at the inception of this project
was minimal: two pages of diagrams that did not correspond
to software artifacts in any rigorous way. This is, in our
experience, typical, and is the single greatest impediment to
having a productive architectural evaluation. Having a pre-
meeting and having the opportunity to request additional
documentation from the contractor made the evaluation
successful.

As a result of our interaction with the BCS contractor team,
substantially greater and higher quality architectural
documentation was produced. This improved documentation
became the basis for the evaluation. And the improvement in
the documentation was identified by management as a major
success of the ATAM process, even before we presented any
findings.

Requirements
One benefit of doing any architectural evaluation is
increased stakeholder communication, resulting in better
understanding of requirements. Frequently, new
requirements surface as a result of the evaluation. The BCS
experience was typical, even though the requirements for
this system were “frozen” and had been made public for over
2 years.

For example, in the BCS the only performance timing
requirements were that the system be ready to operate in 5
minutes from power-on. In particular, there were no timing
requirements for other specific operations of the system,



such as responding to a particular order, or updating the
environment database. These were identified as lacking by
the questions we asked in building the performance model.

Furthermore, there was no explicit switchover requirement,
i.e. the time that it takes for a Soldier to turn itself into a
Commander is not identified as a requirement. This
requirement surfaced as a result of building the availability
model. 

In addition, there was no stated availability requirement.
Two well aimed hits, or two specific hardware failures and
the system, as it is currently designed, is out of commission.
This was seen, by the stakeholders, as a major oversight in
the system’s design.

Sensitivities and Tradeoffs
As identified above, the Message Manager component
presents a possible scenario interaction problem with respect
to modifiability. We identified the need to explore the
substructure of the Message manager and additional indirect
scenarios need to be generated and mapped onto the
architecture to better understand the implications of
anticipated changes on the complexity of the software
architecture. 

The most important tradeoff identified for the BCS was the
communications load on the system, as it was affected by
various information exchange requirements and availability
schemes. The overall performance and availability of the
system is highly sensitive to the latency of the (limited and
shared) communications channel. Not only should the
current performance characteristics be modeled, but also the
anticipated performance changes in the future as the system
scales in its size and scope.

Architectural Problems
In addition to the sensitivities and tradeoffs, in building the
models of the BCS’s availability and performance, we
discovered a serious architectural weakness that had not
been previously identified: there exists the possibility of an
opposing force identifying the distinctive communication
pattern between the Commander and the backup and thus
targeting those nodes specifically. The Commander and
backup exchange far more data than any other two nodes in
the system. This identification can be easily done by an
attacker who could discern the distinctive pattern of
communication between the Commander and (single)
backup, even without being able to decrypt the actual
contents of the messages. Thus, it must be assumed that the
probability of failure for the Commander and its backup
increases over the duration of a mission under the existing
BCS architecture. This was a major architectural flaw that
was only revealed because we were examining the
architecture from the perspective of multiple quality
attributes simultaneously. This flaw is, however, easily
mitigated by assigning multiple backups, which would
eliminate the distinctive communication pattern.

Step 8 - Consolidate Findings and Develop Action Plan
As described above, after the evaluation the contractors were
sent a detailed report of the ATAM. In particular, they were
alerted to the potential modifiability, performance, and

availability problems in the BCS. As an action plan, the
contractor was furnished with three architectural possibilities
for adding multiple Soldier backups and keeping them more
or less synchronized with the Commander. Each of these
architectural deltas had their own ramifications that needed
to be modeled and assessed. And the alternatives will be
chosen different depending on other architectural choices
that affect the performance model, such as the radio modem
speed.

The point of this paper is not to show which alternative the
contractor chose, for that is relatively unimportant and relied
on their organizational and mission-specific constraints. The
point here is to show that the process of performing an
ATAM on the BCS raised the stakeholders’ awareness of
critical issues, focused design activity in the areas of highest
risk, and caused a major iteration within the spiral process of
design and analysis.

6 LESSONS LEARNED WITH ATAM
Although our ATAM experience base is still small, it builds
upon a much larger experience base garnered in doing
SAAM evaluations. From this experience, we have observed
a number of issues worth noting.

First, since this is a scenario-based method and scenarios
come from the system’s stakeholders, dealing with
stakeholders successfully is crucial. However, it is not
always easy. The goals of the architectural evaluation must
be made clear, because we, as external evaluators, are always
regarded with some suspicion and we are taking time out of
the stakeholder’s schedules. Getting the stakeholders to
“buy-in” to the process is essential and this means making
them understand the steps of the ATAM, why these steps are
important, and why they need to occur in this order. For
example, the stakeholders need to be focused on the
scenarios that represent critical uses of and anticipated
changes to the system. 

Another issue that we have noted from performing ATAM
(and SAAM) evaluations is that getting consensus on the
right set of scenarios works differently in different
organizations. So, we must be sensitive to the different styles
of organizations. Some organizations are democratic, others
are strictly top-down hierarchies, some have centralized
decision making while others are distributed, some
organizations have openly antagonistic sub-groups, others
are relatively harmonious. These different styles are
important because the success of the ATAM rests squarely
on eliciting the right scenarios and prioritizing them
correctly.

Having good architectural documentation is crucial to the
success of any architectural evaluation method; the ATAM is
a garbage-in-garbage-out process. If the documentation is
inadequate, we end up spending most of the time
redocumenting the architecture, rather than analyzing it.
“Good” architectural documentation means having multiple
views of the architecture, as Kruchten pointed out [9]. We
like to have: source, system, and dynamic views, annotated
with scenarios and message sequence charts. And we need to
understand the mapping between these views, so that we can



determine how a change in one view will affect the
representations and analytic models in another view.

The ATAM is not meant to provide definitive answers about
the performance or security or modifiability or availability of
the system being built. It is meant to focus design activity,
analysis activity, and stakeholder attention. All of this focus
is toward the goal of identifying sensitivity points in the
architecture, which are the sites of potentially high risk with
respect to the system’s ability to meet its current and future
requirements. This knowledge is not intuitive; it requires a
method that forces the stakeholders to state what is important
to them, both at the moment and in the future. It forces the
architects to state unambiguously how the system will satisfy
the stakeholders’ scenarios. And this allows analysts to build
models of the system’s critical properties. 

Building models is its own benefit: we often learn more by
eliciting the information needed by the models and then
building the models than analyzing the models. And we
don’t expect precise answers from these models: the time in
which an ATAM is performed is typically too early in the
development process for such analyses to be trusted, or for
the effort in creating detailed analyses to be justified. We
build the models to elicit information about the system and
to find trends in the system that will affect its evolution.

Our final observation culled from our experience with the
ATAM is that we have noticed that the iteration of design
and analysis really works. Each time that we go through this
process—collect scenarios, ask questions, ask to have the
architecture presented to us, build models, and critique the
architecture—the architecture and the way that it is
documented changes (and, in our opinion and the opinions of
the project teams, changes for the better). The ATAM is truly
working as a spiral model of analysis and design. 

7 REFERENCES
1. Barbacci, M., Carrière, J., Kazman, R., Klein, M., Lip-

son, H., Longstaff, T., Weinstock, C., “Steps in an Archi-
tecture Tradeoff Analysis Method: Quality Attribute 
Models and Analysis”, CMU/SEI-97-TR-29, Software 
Engineering Institute, Carnegie Mellon University, 1997. 

2. Bass, L., Clements, P., Kazman, R., Software Architec-
ture in Practice, Addison Wesley, 1998.

3. Boehm, B., “A Spiral Model of Software Development 
and Enhancement”, IEEE Computer, 21(5), May 1988, 
pp. 61-72.

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., 
Stal, M., Pattern-Oriented Software Architecture, Wiley, 
1996.

5. Iannino, A., “Software Reliability Theory”, Encyclope-
dia of Software Engineering, Wiley, 1237-1253.

6. Kazman, R., Abowd, G., Bass, L., Clements, P., “Sce-
nario-Based Analysis of Software Architecture”, IEEE 
Software, Nov. 1996, 47-55.

7. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lip-
son, H., Carriere, J., “The Architecture Tradeoff Analysis 
Method”, Proceedings of ICECCS ‘98, (Monterey, CA), 
August 1998, 68-78.

8. Klein, M., Ralya, T., Pollak, B., Obenza, R., Gonzales 
Harbour, M., A Practitioner’s Handbook for Real-Time 
Analysis, Kluwer Academic, 1993.

9. Kruchten, P., “The 4+1 View Model of Architecture”, 
IEEE Software, 12(6), Nov. 1995.

10. Maranzano, J., Best Current Practices: Software Archi-
tecture Validation, AT&T Technical Report, 1993.

11. Shaw, M., Garlan, D., Software Architecture: Perspec-
tives n an Emerging Discipline, Prentice Hall, 1996.


