
3/6/2013

1

Concurrency Culprit
and

Plain 'Ole Java Concurrency

4010-441
Principles of Concurrent System Design

The Ultimate Culprit - Shared, Mutable State

• Most of your development has been in imperative languages.

• The fundamental operation is assignment to change state.
– Assignable variables are mutable.

– May be exposed as public (bad karma).

– May be exposed via interface methods (medium warm karma).

– Things get tricky very fast when > 1 thread can invoke a mutating
function.

• Three approaches:
– Make things immutable.

– Hide shared state behind sequential access.

– Provide mechanisms to support controlled access to shared, mutable
state.

2

3/6/2013

2

Immutability

• All state in the Class is final.

• Only assignment is in the constructor.

• Mutators now return a new object.

• Examples:
– Points in space (x, y, z)

– Immutable collections

• Performance not as bad as it sounds:
– Compiler optimizations have improved significantly.

– Tail recursion lessens the problems of stack explosion.

– Does require a new way of thinking (Scala, LISP, Clojure, Erlang)

3

Immutability

// NOTE: Not thread safe!

public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public void move(int dx, int dy) {

 x += dx ;

 y += dy ;

 }

 . . .

}

// NOTE: Thread safe

public class Point {

 private final int x ;

 private final int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public Point move(int dx, int dy) {

 return new Point(x + dx,

 y + dy) ;

 }

 . . .

}

This is thread safe, but can
it be used the same way?

4

3/6/2013

3

Hide Shared State

• Do not allow direct calls on methods.

• Send messages instead – serialize access.

• State encapsulated in a thread (agent).
– Process can extract messages w/o interference.

– Process can (possibly) serve things out of order.

• Note: Much simpler to scale to multiple processors w/o
shared memory.

• We'll see this in the second part of the course with Agents.

• Note: Can be combined with immutability approaches
– Scala

– Erlang

5

Shared, Mutable State

• Need someway to
– Enforce sequential guarantees in face of concurrency.

– Prevent race conditions.

– Address safety, liveness, fairness concerns.

• We'll start with the barebones, standard Java language
mechanisms offered in the original version (~1995).

• We'll then branch out into other libraries that build on this
base: java.util.concurrent (Java 5, ~2004)

6

3/6/2013

4

To Get Things Going - What's Wrong Here?

@NotThreadSafe

public class UnsafeSequence {

 private int next = 0 ;

 public int getNext() {

 return next++ ;

 }

}

7

Is this an “atomic” operation?

Fixing The Example

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

}

• Cache's flushed on entry to / exit from getNext()

• One thread at a time can execute getNext()

8

3/6/2013

5

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Client(s) */

int i, j ;

i = s.getNext() ; j = s.getNext() ;

assert(j == i + 1) //??

How can this break?

9

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Clients */

int i, j ;

synchronized (s) {

 i = s.getNext() ; j = s.getNext() ;

}

assert(j == i + 1) //??

This works, but why does
it have a bad code smell?

10

3/6/2013

6

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

 public synchronized void getVector(int vector[]) {

 for (int i = 0 ; i < vector.length ; ++i) {

 vector[i] = getNext() ;

 }

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Clients */

int v[2] ;

s.getVector(v) ;

Why do we need to switch
to return a vector?

What happens when a thread
holding a lock tries to obtain
that lock again?

11

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

 public synchronized void getVector(int vector[]) {

 for (int i = 0 ; i < vector.length ; ++i) {

 vector[i] = getNext() ;

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Clients */

int v[2] ;

s.getVector(v) ;

Assumes the lock
is reentrant

12

what is meant by
reentrant?

3/6/2013

7

Plain Ole' Java Concurrency (POJC)

• Passive objects (resource managers)

• Object locks

• Active objects
– Threads

– Runnable

– th.start -> th.run() or rn.run()

– Thread.currentThread()

– th.getName(), th.join()

• Synchronized methods and blocks

• Wait / notify / notifyAll

• The nastiness of exceptions

• YUCCH!

13

Thread Safe Objects

• A thread-safe class behaves correctly
– When accessed by multiple threads

– Regardless of scheduling or interleaving

– With no additional synchronization on the part of the caller

• Thread-safe classes encapsulate necessary synchronization so
clients need not provide their own.

• Based on good OO design principles:
– Encapsulate state in private instance variables

– Use immutability where practicable

– Specify state invariants that must be maintained

• Added:
– Locks to maintain invariants in the face of concurrent access

14

3/6/2013

8

Thread Safe Object Consequences

• Stateless objects are automatically thread safe.

• Immutable objects are automatically thread safe.

• Effectively immutable objects are automatically thread safe
– Built from mutable parts.

– Never change those parts after construction.

– Never let a mutable part “escape” from encapsulation.

• Getters

• Parameters

• In all other cases, we have to ensure thread-safety by proper
synchronization of access to mutable state.

15

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized code block.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public void move(int dx, int dy) {

 synchronized(this) {

 x += dx ;

 y += dy ;

 }

 }

 . . .

}

16

3/6/2013

9

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized method.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public synchronized void move(int dx, int dy) {

 x += dx ;

 y += dy ;

 }

 . . .

}

17

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized code block.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public synchronized void move(Point delta) {

 x += delta.getX();

 y += delta.getY();

 }

 . . .

}

We can move to a Point
but this can break. How?

What do we need to do
to fix the problem?

18

3/6/2013

10

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized code block.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public synchronized void move(Point delta) {

 synchronized(delta) {

 x += delta.getX();

 y += delta.getY();

 }

 }

 . . .

}

Fixed that problem but
introduced a new one.
What is it?

19

Thread States

20

When a Thread is created, it is in the Passive (non-executable) state.

When you invoke start(), a new thread is marked Runnable and is placed in the scheduler queue.

Eventually the thread is selected by the scheduler and made Running; if it uses its allotted time the
scheduler returns it to Runnable.

A thread is placed in the NotRunnable state when one of these events occurs:

 Its sleep method is invoked.

 The thread calls the wait method to wait for a specific condition to be satisfied.

 The thread is blocking on I/O or some other external event.

When the run() method terminates, the Thread dies. A Dead Thread cannot be resuscitated.

Passive Runnable

NotRunnable Running

Dead

• Passive
• Runnable
• Running

• Suspended
• Dead

return

select timeout
yield

start

sleep | wait | i/o block

timeup | signal | i/o complete

3/6/2013

11

wait(), notify(), notifyAll()

wait() Waits for a condition to occur. This is a method of the Object class and must be called from within
a synchronized method or block. It is with respect to the synchronized object.

When wait() is called:

• the current thread is suspended or placed in the wait queue (non-runnable state)

• the synchronization lock for the target object is released, but all other locks held by the thread are retained.

• note that wait() can also be called with a timeout

notify() A thread in the wait queue for the target object is awakened and contends to regain the object’s
lock.

When notify() is called:

• an arbitrary thread waiting on the object’s condition is awakened and attempts to regain the synchronization
lock it relinquished as a result of its wait() call

• after obtaining the lock it resumes execution at the point following the wait() call

notifyAll() All threads in the wait queue for the target object are awakened and contend to regain the object’s
lock.

State Dependent Behavior

• Assume we have a simple bounded counter.

• Value must range from 0 to some maximum.

• Mutators: up and down

public class SBC {
 private int c = 0 ;
 private final int max ;

 public SBC(int max) {
 this.max = max ;
 }

 public int get() {
 return c ;
 }

 public void up() {
 if (c == max) {
 ???
 }
 c++ ;
 }

 public void down() {
 if (c == 0) {
 ???
 }
 c-- ;
 }
}

What behavior should
we have for the ???s?

What is the invariant
for this class?

22

3/6/2013

12

State Dependent Behavior

• Handling end cases: Sequential code

– Nothing will ever “fix” the problem.

– Need to signal error

– Throw an exception

– Return an error value

• Handling end cases: Concurrent code
– End case may be temporary

– If at max, another thread may do a down and we can proceed

– Therefore, we have an additional option - wait

23

State Dependent Behavior

public class SBC {
 private int c = 0 ;
 private final int max ;

 public SBC(int max) {
 this.max = max ;
 }

 public synchronized int get() {
 return c ;
 }

 public synchronized void up() {
 try {
 while(c == max)
 wait() ;
 } catch(Exception e) {} ;

 c++ ;
 notifyAll() ;
 }

 public synchronized void down() {
 try {
 while(c == 0)
 wait() ;
 } catch(Exception e) {}

 c-- ;
 notifyAll() ;
 }

24

Why did this change
from an if statement
to a while loop?

3/6/2013

13

State Dependent Behavior

public class SBC {
 private int c = 0 ;
 private final int max ;

 public SBC(int max) {
 this.max = max ;
 }

 public synchronized int get() {
 return c ;
 }

 public synchronized void up() {
 waitAtMax();

 c++ ;
 notifyAll() ;
 }

 public synchronized void down() {
 waitAtMin() ;

 c-- ;
 notifyAll() ;
 }

 private void waitAtMax {
 try {
 while(c == max)
 wait() ;
 } catch (Exception e) {} ;
 }

 private void waitAtMin() {
 . . .
 }

25

