
Semaphores, Locks & Conditions

4010-441

Principles of Concurrent System Design

Intrinsic vs. Explicit Locks

• Pre Java 5.0 only intrinsic mechanisms were available for
coordinating access to shared data.
– synchronized

– volatile

How do synchronized and volatile
differ in providing thread-safe
access to shared data?

What are the limitations of using
synchronized as a locking mechanism?

Semaphores and Locks

• Java 5+ added Semaphores Locks and Conditions

– Explicit locking

– Semaphores and Locks operate like synchronized, but:

• Need not be nested

• Can pass a lock from object to object within a thread

– Conditions - wait for one of many possible states to arise

• Condition associated with specific lock for atomicity control.

• Conditions only available via factory in Lock

Semaphore

• Implements a general semaphore.

• Initialize with a number of permits.

• Permits can be acquired and released.

• Block on acquire if no permits remain (until one released).

• Interface abstract:

public class Semaphore {

 public Semaphore(int permits) ;

 public Semaphore(int permits; boolean fair) ;

 public void acquire() ;

 public void acquire(int npermits) ;

 public void release() ;

 public void release(int npermits) ;

 // other methods exists – see java.util.concurrent.Semaphore

}

Fixed Resource Control Using Semaphores
class Resource { . . . }

class ResourcePool {

 private final int NR ;

 private final Resource pool[] ;

 private final boolean used[] ;

 private final Semaphore available ;

 public ResourcePool(int nr) {

 NR = nr ;

 pool = new Resource[NR] ;

 used = new boolean[NR] ;

 available = new Semaphore(NR) ;

 }

 public Resource get() {

 available.acquire() ;

 return nextResource() ;

 }

 public synchronized void put(Resource r) {

 int index = find(r, pool) ;

 used[index] = false ;

 available.release() ;

 }

 private synchronized Resource nextResource() { . . . }

 private int find(Resource r) { . . . }

}

The Lock Interface

• Timed or polled lock acquisition

• Locks must be released in finally block to prevent deadlock in the case of
an exception thrown in guarded code

• Responsive to interruption – locking can be used in within cancellable
activities.

• How does this differ from intrinsic (synchronized) locking?

public interface Lock {

 public void lock() ;

 public void unlock() ;

 public Condition newCondition() ;

 public void lockInterruptibly();

 public boolean tryLock();

 public boolean tryLock(long time, TimeUnit unit);

}

java.util.concurrent.lock

• Interfaces

– Lock

– ReadWriteLock

– Condition

• Provided Classes

– ReentrantLock (Lock)

– ReentrantReadWriteLock (ReadWriteLock)

• ReentrantReadWriteLock . ReadLock (Lock w/o Conditions)

• ReentrantReadWriteLock . WriteLock (Lock)

– AbstractQueuedSynchronizer

• AbstractQueuedSynchronizer . ConditionObject (Condition)

– LockSupport

Typical Lock Usage

class X {

 private final Lock lock = new ReentrantLock(fair);

 // Other class stuff . . .

 void m() {

 lock.lock(); // block until lock is acquired

 try {

 // ... method body

 } finally {

 lock.unlock()

 }

 }

}

ReadWriteLock

• Builtin support for the readers / writers problem:
– Assume a data structure which is read much more frequently than it is

written.

– No reason to forbid multiple concurrent reads.

– But cannot overlap reads and writes.

– Use distinct but related locks

public interface ReadWriteLock {

 Lock readLock() ;

 Lock writeLock() ;

}

ReadWriteLock Use

Reader Method Structure

public void read() {

 rwl.readLock().lock()

 try {

 // read your heart out

 // other threads may be

 // reading as well

 } finally {

 rwl.readLock().unlock() ;

 }

}

Writer Method Structure

public void write() {

 rwl.writeLock().lock()

 try {

 // Current thread can write

 // but no other thread is

 // reading or writing.

 } finally {

 rwl.writeLock().unlock() ;

 }

}

public class Example {
 private final ReadWriteLock rwl = new ReentrantReadWriteLock(fair);

Locks Using Semaphores
class MyLock implements Lock {

 private final Semaphore mutex = new Semaphore(1) ;

 public void lock() {

 mutex.acquire() ;

 }

 public void unlock() {

 mutex.release() ;

 }

 public Condition newCondition() {

 return new MyCondition(this) ;

 }

 // Other lock methods

}

Conditions Using Semaphores
class MyCondition implements Condition {

 private int nwaiters = 0 ;

 private final MyLock myLock ;

 private final Semaphore myWaitSema = new Semaphore(0) ;

 public MyCondition(MyLock lock) {

 myLock = lock ;

 }

 public void await() {

 nwaiters++ ;

 myLock.unlock() ;

 myWaitSema.acquire() ;

 myLock.lock() ;

 }

 public void notify() {

 if (nwaiters > 0) {

 nwaiters-- ;

 myWaitSema.release() ;

 }

 }

 // Other condition methods

}

Performance & Fairness

• Fair locks – threads acquire a lock in order requested

• Nonfair locks – permits barging, running threads can jump
ahead of threads waiting to acquire a lock

• Intrinsic locks (usually) implemented as nonfair

• ReentrantLock offers a constructor option.

• Why not just implement all locks as fair?

Intrinsic or Explicit?

• ReentrantLock or synchronized?

• As of Java 6 intrinsic locking performs on par with explicit
locking in terms of scalability (number of threads contending
for lock)

• Favor Reentrant only when advanced features (timing, polled,
interruptible, fairness) is required.

• Favor synchronized for simplicity

