Semaphores, Locks & Conditions

4010-441
Principles of Concurrent System Design



Intrinsic vs. Explicit Locks

* PreJava 5.0 only intrinsic mechanisms were available for
coordinating access to shared data.
— synchronized
— volatile
How do synchronized and volatile

differ in providing thread-safe
access to shared data?

What are the limitations of using
synchronized as a locking mechanism?



Semaphores and Locks

e Java 5+ added Semaphores Locks and Conditions
— Explicit locking
— Semaphores and Locks operate like synchronized, but:

* Need not be nested
e Can pass a lock from object to object within a thread

— Conditions - wait for one of many possible states to arise
* Condition associated with specific lock for atomicity control.

e Conditions only available via factory in Lock



Semaphore

 Implements a general semaphore.

* |Initialize with a number of permits.

* Permits can be acquired and released.

* Block on acquire if no permits remain (until one released).
* Interface abstract:

public class Semaphore {
public Semaphore( int permits ) ;
public Semaphore( int permits; boolean fair ) ;

public void acquire() ;
public void acquire( int npermits ) ;

public void release() ;
public void release( int npermits ) ;

// other methods exists - see java.util.concurrent.Semaphore



Fixed Resource Control Using Semaphores

class Resource { . . . }
class ResourcePool {

private final int NR ;

private final Resource pool[] ;
private final boolean used[] ;
private final Semaphore available ;

public ResourcepPool(int nr) {
NR = nr ;
pool = new Resource[NR] ;
used = new boolean[NR] ;
available = new Semaphore(NR) ;

}

public Resource get() {
available.acquire() ;
return nextResource() ;

}

public synchronized void put(Resource r) {
int index = find(r, pool) ;
used[index] = false ;
available.release() ;

}
private synchronized Resource nextResource() { . . . }
private int find(Resource r) { . . . }



The Lock Interface

* Timed or polled lock acquisition

* Locks must be released in finally block to prevent deadlock in the case of
an exception thrown in guarded code

* Responsive to interruption — locking can be used in within cancellable
activities.

 How does this differ from intrinsic (synchronized) locking?

public interface Lock {
public void Tock() ;
public void unlock() ;
public Condition newCondition() ;

public void TockInterruptibly(Q);
public boolean tryLock();
public boolean tryLock(long time, TimeuUnit unit);



java.util.concurrent.lock

* Interfaces
— Lock
— ReadWriteLock

— Condition

* Provided Classes
— ReentrantlLock (Lock)

— ReentrantReadWriteLock (ReadWriteLock)
* ReentrantReadWriteLock . ReadlLock (Lock w/o Conditions)
* ReentrantReadWriteLock . WriteLock (Lock)

— AbstractQueuedSynchronizer
* AbstractQueuedSynchronizer . ConditionObject (Condition)

— LockSupport



Typical Lock Usage

class X {
private final Lock lock = new ReentrantLock( fair );

// Other class stuff .

void m() {
Tock.lock(); // block until lock 1is acquired
try {
// ... method body
} finally {

Tock.unTock()
}



ReadWriteLock

* Builtin support for the readers / writers problem:

— Assume a data structure which is read much more frequently than it is
written.

— No reason to forbid multiple concurrent reads.
— But cannot overlap reads and writes.
— Use distinct but related locks

public interface ReadwriteLock {
Lock readLock() ;
Lock writeLock() ;



ReadWriteLock Use

public class Example {
private final ReadwriteLock rwl = new ReentrantReadwriteLock( fair );

Reader Method Structure Writer Method Structure
public void read() { public void write() {
rwl.readLock().lock() rwl.writeLock().lock()
try { try {
// read your heart out // Current thread can write
// other threads may be // but no other thread is
// reading as well // reading or writing.
} finally { } finally {
rwl.readLock().unlock() ; rwl.writeLock() .unlock() ;
} }



Locks Using Semaphores

class MyLock implements Lock {
private final Semaphore mutex = new Semaphore(l) ;

public void Tock() {
mutex.acquire() ;

}

public void unlock() {
mutex.release() ;

}

public Condition newCondition() {
return new MyCondition( this ) ;

}
// Other lock methods



Conditions Using Semaphores

class MyCondition implements Condition {

private int nwaiters = 0 ;
private final MyLock myLock ;
private final Semaphore mywaitSema = new Semaphore(0) ;

public MyCondition(MyLock Tock) {
myLock = lock ;
}

public void await() {
nwaiters++ ;
myLock.unlock() ;
mywaitSema.acquire() ;
myLock.Tock() ;

}

public void notify() {
if ( nwaiters > 0 ) {
nwaiters-- ;
mywaitSema.release() ;
}
}

// Other condition methods



Performance & Fairness

Fair locks — threads acquire a lock in order requested

Nonfair locks — permits barging, running threads can jump
ahead of threads waiting to acquire a lock

Intrinsic locks (usually) implemented as nonfair
ReentrantLock offers a constructor option.
Why not just implement all locks as fair?



Intrinsic or Explicit?

ReentrantLock or synchronized?

As of Java 6 intrinsic locking performs on par with explicit
locking in terms of scalability (number of threads contending
for lock)

Favor Reentrant only when advanced features (timing, polled,
interruptible, fairness) is required.

Favor synchronized for simplicity



