
Software Transactional Memory

(STM)

4010-441

Principles of Concurrent System Design

State - Values and Change*

• Imperative Programming
– Manipulates world (memory) directly.

– Foundation in the old world of sequential execution (1 thread).

– Mutexes, locks, state propagation in multi-core - YUCCH!

• Functional Programming
– More mathematical, "pure" view: Functions take arguments and

return values.

– All values immutable, so concurrency is a non-issue.

• Enter the real world
– Few programs are merely functions.

– Need a notion of "state" - now it's this, now it's that.

– States via immutable values and mutable identities.

*Adapted from Rick Hickey's Work: See http://clojure.org/state

http://clojure.org/state

State - Values and Change*

• Identities
– Stable logical entity associated with different values over time.

– Examples:

• Boston Red Sox

• U. S. citizens

• Identities have state - the associated value at a point in time.

• Values do not change - they are immutable:
– 42 doesn't change.

– July 4, 1776 doesn't change.

– The set of persons on the Yankees in 1927 doesn't change.

• That is, aggregates are also immutable values

• The identity Yankees refers to different immutable person sets as trades
occur, etc.

• Radically different from most OO approaches.

*Adapted from Rick Hickey's Work: See http://clojure.org/state

http://clojure.org/state

The Clojure / AKKA Approach

• Clearly separate identities from their values over time.
– Identities are not states; identities have states.

– And states are true (mathematical values).

– Identities "appear" to change by assuming different states over time.

– Program observations of identity's state is a snapshot of an
unchanging value.

• Concurrency
– Refs create identities associated with values.

– Updating an identity must be done in an ACI transaction.

– Changes proceed only if the initial snapshot is still valid at commit
time.

– Immutability => efficient creation of new values from old ones.

– Especially important with composite values.

*Adapted from Rick Hickey's Work: See http://clojure.org/state

http://clojure.org/state

Transactions in Akka

import akka.stm.*;

final Ref<Integer> ref = new Ref<Integer>(0);

public int counter() {

 return new Atomic<Integer>() {

 public Integer atomically() {

 int inc = ref.get() + 1;

 ref.set(inc);

 return inc;

 }

 }.execute();

}

counter();

// -> 1

counter();

// -> 2

Transactions in Akka

import akka.stm.*;

final Ref<Integer> ref = new Ref<Integer>(0);

public int counter() {

 return new Atomic<Integer>() {

 public Integer atomically() {

 int inc = ref.get() + 1;

 ref.set(inc);

 return inc;

 }

 }.execute();

}

counter();

// -> 1

counter();

// -> 2

Transactions in Akka

import akka.stm.*;

final Ref<Integer> ref = new Ref<Integer>(0);

public int counter() {

 return new Atomic<Integer>() {

 public Integer atomically() {

 int inc = ref.get() + 1;

 ref.set(inc);

 return inc;

 }

 }.execute();

}

counter();

// -> 1

counter();

// -> 2

Transactions in Akka

import akka.stm.*;

final Ref<Integer> ref = new Ref<Integer>(0);

public int counter() {

 return new Atomic<Integer>() {

 public Integer atomically() {

 int inc = ref.get() + 1;

 ref.set(inc) ;

 return inc;

 }

 }.execute();

}

counter();

// -> 1

counter();

// -> 2

Transactions in Akka

import akka.stm.*;

final Ref<Integer> ref = new Ref<Integer>(0);

public int counter() {

 return new Atomic<Integer>() {

 public Integer atomically() {

 int inc = ref.get() + 1;

 ref.set(inc);

 return inc;

 }

 }.execute() ;

}

counter();

// -> 1

counter();

// -> 2

Another Example - Energy Source

(Solved previously using explicit locking in PCJVM Chpt 5)

public class UseEnergySource

...

for(int i = 0; i < 10; i++) {

 tasks.add(new Callable<Object>() {

 public Object call() {

 for(int j = 0; j < 7; j++) energySource.useEnergy(1);

 return null;

 }

 });

…

useEnergy Transaction

public class EnergySource {

 private final long MAXLEVEL = 100;

 final Ref<Long> level = new Ref<Long>(MAXLEVEL);

 final Ref<Long> usageCount = new Ref<Long>(0L);

…

public boolean useEnergy(final long units) {

 return new Atomic<Boolean>() {

 public Boolean atomically() {

 long currentLevel = level.get();

 if(units > 0 && currentLevel >= units) {

 level.swap(currentLevel - units);

 usageCount.swap(usageCount.get() + 1);

 return true;

 } else {

 return false;

 }

 }

 }.execute();

 }

Summary

• Transactions may end up retried several times.
– Must be idempotent.

– "Unexpected" retries.

• Efficient immutable datastructures (via "smart sharing")
– TransactionalMap

– TransactionalVector

