
1

Adapted from From

DistributedSystems: Concepts and Design, Coulouris,

Dollimore and Kindberg

Edition 4, © Addison-Wesley 2005

Fundamental Distributed
System Models

Fundamental Models

Fundamental Models – Description of properties
that are present in all distributed architectures.

� Interaction Models – Issues dealing with the
interaction of process such as performance and timing
of events.

� Failure Models – Specification of faults that can be
exhibited by processes and communication channels.

� Security Models – Threats to processes and
communication channels

2

Interaction Model Challenges

� Distributed systems are composed of
cooperating processes:
� Generally unpredictable timing and rate of
message transmission delivery between
processes.

� Processes maintain their own private state

� There is no single global notion of time.
� Clock drift rate – relative difference process clocks
differ from a perfect reference clock.

Performance Considerations

� Latency – delay between the transmission start
of a message and its receipt.
� Time taken by the actual message transmission will
vary with load of message traffic and time required by
OS services to process messages.

� Bandwidth – amount of information that can be
transmitted over a computer network in a given
amount of time.

3

� Synchronous Model
� Boundaries known for time to execute step, message
transmission and clock drift rate.

� Timeouts typically used to detect failures
� Ineffective resource sharing

� Asynchronous Model
� No assumptions made on process time, message
transmission or clock drift.

� Event ordering cannot be dependent on time
� More opportunity for resource sharing, but much more
complex design.

Two Interaction Model Flavours

Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive

m2

m1

• Delivery time of messages cannot be predicted since clocks cannot be
perfectly synchronized across a distributed system

• Logical ordering – uses logical time to provide an order among events
generated by separate processes without depending on clocks.

4

Failure Models

� Omission Failures
� Process – halted (crashed) and will not execute any further. “Fail-
stop” if other processes can detect this state.

� Communication – messages are “dropped” between sender and
receiver (sender buffer, receiver buffer or communication channel)

� Arbitrary (Byzantine) Failures
� Absence of process and communication omission failures, but
integrity of data or processing steps is in error and undetectable
by other processes.

� Communication failures more unlikely since they are typically
detected at the lower levels of message transmission software and
hardware.

Processes and channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

5

Omission and Arbitrary Failures

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

• Applicable in synchronous systems with set time limits

• Not applicable in asynchronous systems since no time limits can be
guaranteed.

6

Masking Failures

� A service masks a failure by hiding it or
converting it into a more acceptable type of
failure.

� System is said to be “fault tolerant”
� Examples -checksums, message retransmission,
redundant servers

� Reliable communication (despite omission
failures):
� Validity – any message is eventually delivered
� Integrity – message received is identical to message
sent, and no messages are delivered twice

Failure Models

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

Objects and Principles

� Access rights – who is allowed to perform operations on the objects

� Principle – authorities that possess access rights (user or process)

7

Security Threats

� Enemy (adversary) legitimate or unauthorized
connection to network.

� Threats to processes – client or server cannot
determine identity.

� Threats to communication channels – enemy can
copy, alter or inject messages

� Denial of service – excessive requests with the
intention of overloading resources

� Mobile Code – Trojan horse attachments, viruses

The enemy

Communication channel

Copy of m

Process p Process qm

The enemy
m’

8

Defeating Security Threats

� Encryption of messages using cryptography
� secret key pairs

� Authentication of message senders

� Secure channels – service layer built on top
of existing communication services
� SSL – secure socket layer

� Make worst-case assumptions during
design.

Secure channels

Principal A

Secure channelProcess p Process q

Principal B

