-

"

Reliability Engineering

~

/

September 22, 2004 RIT Software Engineering

Swami Natarajan

/Reliability Engineering Practices\

« Define reliability objectives

« Use operational profiles to guide test execution
— Preferable to create automated test infrastructure

« Track failures during system tests
« Use reliability growth curves to track quality of product

* Release when quality of product meets reliability
objectives

« Paper on “Software reliability engineered testing”
— http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp
— Fairly easy to read, good overview

September 22, 2004 RIT Software Engineering Swami Natarajan

/ Defining reliability objectives\

« Quantitative targets for level of reliability (“failure
Intensity”: failures/nour) that makes business sense
— Remember for defects it was “not discussable”?

Impact of a failure FI Objective MTBF

100’s deaths, >$10° cost 10° 114,000yrs

1-2 deaths, around $10° cost 106 114 yrs

$1,000 cost 1073 6 weeks

$100 cost 102 100 h

$10 cost 10-1 10 h

$1 cost 1 l1h /

From John D. Musa
September 22, 2004 RIT Software Engineering Swami Natarajan

~

/T esting based on operational protiles

» Done during black-box system testing

« Preferably mix of test cases that match operational
profile

 If possible, create automated test harness to execute
test cases
— Need to run large numbers of test cases with randomized
parameters for statistical validity
» EXecute test cases in randomized order, with selection
patterns matching frequencies in operational profile

\— Simulating actual pattern of usage /

September 22, 2004 RIT Software Engineering Swami Natarajan

Builds and code integration

Most large projects have periodic builds

— Development team integrates a new chunk of code into the product
and delivers to test team

Test team does black box system testing

— ldentifies bugs and reports them to dev team
Track pattern of defects found during system testing to see how
reliability varies as development progresses

— Defects found should decrease over time as bugs are removed,
but each new chunk of code adds more bugs

— Pattern of reliability growth curve tells us about the code being
added, and whether the product code is becoming more stable
Pattern can also be used to statistically predict how much more

testing will be needed before desired reliability target reached

— Useful predictions only after most of the code integrated and failure
rates trend downward

September 22, 2004 RIT Software Engineering Swami Natarajan

Tracking failures during testing

Enter data about when failures occurred during
system testing into reliability tool e.g. CASRE
— Plots graph of failure intensity vs. time

R (in concept)

Failure Intengity

TI M E From netserver.cerc.wvu.edu/numsse/Fall2003/691D/lec t
September 22, 2004 RIT Software Engineering Swami Natarajan

/ A more realistic curve

Lpper Confidence
(73 percent)

ql' Mot Lilealy

ry
E_ Lowwer Confideno:

(75 parcant)

T
3
B
£
o
(=]
D—
L
]
o
=]
i
L
=
|
=1
:\;_
E
@
Z
E
L
o
2
3
T

Failurz-Irenzsty
Clhjeetive

From http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

September 22, 2004 RIT Software Engineering

Swami Natarajan

Reliability Models

« Assumes a particular reliability model

 Different reliability models proposed
— Differ in statistical model of how reliability varies with time
— Fitting slightly different curves to the data
— Built into the tool

* Another statistical model, the Rayleigh model, can be
used to predict remaining defects

« My take on this:

— Trying to get too mathematically precise about the exact
level of reliability is not valid!

— Just models, use to get a reasonable estimate of reliability

September 22, 2004 RIT Software Engineering Swami Natarajan

Reliability Metric

« Estimated failure intensity
— (Reliability = 1 / failure intensity)

— Tool shows statistical estimates of how failure intensity varies
over time

* The curve is referred to as the “reliability growth curve”

— Note that the product being tested varies over time, with fixes
and new code

— In-process feedback on how quality is changing over time

September 22, 2004 RIT Software Engineering Swami Natarajan

Interpreting reliability growth curves

« Spikes are normally associated with new code being added
« Larger volumes of code or more unreliable code causes bigger spikes
— The curve itself tells us about the stability of the code base over time
« If small code changes/additions cause a big spike, the code is really
poor quality or impacts many other modules heavily
* The code base is stabilizing when curve trends significantly downward

— Release (ideally) only when curve drops below target failure intensity
objective ... indicates right time to stop testing

— Can statistically predict how much more test effort needed before target
failure intensity objective needed.

« Shows up “adding a big chunk of code just before release”
— Common occurrence! ... Getting code done just in time

* Note that there is definitely random variation!
— Hence “confidence intervals”
— Avoid reading too much into the data

September 22, 2004 RIT Software Engineering Swami Natarajan

Limitations of reliability curves

Operational profiles are often “best guesses”, especially for new
software
The reliability models are empirical and only approximations
Failure intensity objectives should really be different for different
criticality levels

— Results in loss of statistical validity!
Automating test execution is challenging (particularly building
verifier) and costly

— But it does save a lot over the long run

— More worthwhile when reliability needs are high

Hard to read much from them till later stages of system testing
... very late in the development cycle

September 22, 2004 RIT Software Engineering Swami Natarajan

Reliability Certification

« Another use for reliability engineering is to determine the
reliability of a software product

— E.g. you are evaluating web servers for your company website —
reliability is a major criterion

« Build test suite representative of your likely usage
— Put up some pages, maybe including forms
— Create test suite that generates traffic
— Log failures e.g. not loading, wrong data received
— Track failure patterns over time
« Evaluate multiple products or new releases using test suite, to
determine reliability
— Avoids major problems and delays with poor vendor software
« Note that this applies the analysis to a fixed code base
— Fewer problems with statistical validity

September 22, 2004 RIT Software Engineering Swami Natarajan

Example certification curve

Continue

v
LLI
1]
=
.|
ol
i
o
a
=
i

&

MORMALISZED FAILLIRE TIME

From http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

September 22, 2004 RIT Software Engineering Swami Natarajan

Summary

« Software reliability engineering is a scientific
(statistical) approach to reliability

« Vast improvement over common current practice

— “Keep testing until all our test cases run and we feel
reasonably confident”

« Avoids under-engineering as well as over-

engineering (“zero defects”)

* When done well, SRE adds ~1% to project cost

— Musa’s numbers, my experience: ~10% for medium-sized
projects if you include cost of automated testing

— Note that as the number of builds and releases increases,
automated testing more than pays for itself

September 22, 2004 RIT Software Engineering Swami Natarajan

