
RIT Software Engineering Swami NatarajanSeptember 22, 2004

Reliability Engineering

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Reliability Engineering Practices

• Define reliability objectives

• Use operational profiles to guide test execution

– Preferable to create automated test infrastructure

• Track failures during system tests

• Use reliability growth curves to track quality of product

• Release when quality of product meets reliability

objectives

• Paper on “Software reliability engineered testing”
– http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

– Fairly easy to read, good overview

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Defining reliability objectives

• Quantitative targets for level of reliability (“failure
intensity”: failures/hour) that makes business sense

– Remember for defects it was “not discussable”?

Impact of a failure FI Objective MTBF

100’s deaths, >$109 cost 10-9 114,000yrs

1-2 deaths, around $106 cost 10-6 114 yrs

$1,000 cost 10-3 6 weeks

$100 cost 10-2 100 h

$10 cost 10-1 10 h

$1 cost 1 1 h

From John D. Musa

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Testing based on operational profiles

• Done during black-box system testing

• Preferably mix of test cases that match operational

profile

• If possible, create automated test harness to execute

test cases

– Need to run large numbers of test cases with randomized
parameters for statistical validity

• Execute test cases in randomized order, with selection

patterns matching frequencies in operational profile

– Simulating actual pattern of usage

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Builds and code integration
• Most large projects have periodic builds

– Development team integrates a new chunk of code into the product
and delivers to test team

• Test team does black box system testing

– Identifies bugs and reports them to dev team

• Track pattern of defects found during system testing to see how
reliability varies as development progresses

– Defects found should decrease over time as bugs are removed,
but each new chunk of code adds more bugs

– Pattern of reliability growth curve tells us about the code being
added, and whether the product code is becoming more stable

• Pattern can also be used to statistically predict how much more
testing will be needed before desired reliability target reached

– Useful predictions only after most of the code integrated and failure
rates trend downward

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Tracking failures during testing

• Enter data about when failures occurred during
system testing into reliability tool e.g. CASRE

– Plots graph of failure intensity vs. time

Failure Intensity

Reliability

R

TIME

(in concept)

From netserver.cerc.wvu.edu/numsse/Fall2003/691D/lec3.ppt

RIT Software Engineering Swami NatarajanSeptember 22, 2004

A more realistic curve

From http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Reliability Models

• Assumes a particular reliability model

• Different reliability models proposed
– Differ in statistical model of how reliability varies with time

– Fitting slightly different curves to the data

– Built into the tool

• Another statistical model, the Rayleigh model, can be
used to predict remaining defects

• My take on this:
– Trying to get too mathematically precise about the exact

level of reliability is not valid!

– Just models, use to get a reasonable estimate of reliability

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Reliability Metric

• Estimated failure intensity

– (Reliability = 1 / failure intensity)

– Tool shows statistical estimates of how failure intensity varies
over time

• The curve is referred to as the “reliability growth curve”

– Note that the product being tested varies over time, with fixes
and new code

– In-process feedback on how quality is changing over time

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Interpreting reliability growth curves

• Spikes are normally associated with new code being added

• Larger volumes of code or more unreliable code causes bigger spikes

– The curve itself tells us about the stability of the code base over time

• If small code changes/additions cause a big spike, the code is really
poor quality or impacts many other modules heavily

• The code base is stabilizing when curve trends significantly downward

– Release (ideally) only when curve drops below target failure intensity
objective … indicates right time to stop testing

– Can statistically predict how much more test effort needed before target
failure intensity objective needed.

• Shows up “adding a big chunk of code just before release”

– Common occurrence! … Getting code done just in time

• Note that there is definitely random variation!

– Hence “confidence intervals”

– Avoid reading too much into the data

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Limitations of reliability curves

• Operational profiles are often “best guesses”, especially for new
software

• The reliability models are empirical and only approximations

• Failure intensity objectives should really be different for different
criticality levels

– Results in loss of statistical validity!

• Automating test execution is challenging (particularly building
verifier) and costly

– But it does save a lot over the long run

– More worthwhile when reliability needs are high

• Hard to read much from them till later stages of system testing
… very late in the development cycle

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Reliability Certification

• Another use for reliability engineering is to determine the
reliability of a software product

– E.g. you are evaluating web servers for your company website –
reliability is a major criterion

• Build test suite representative of your likely usage

– Put up some pages, maybe including forms

– Create test suite that generates traffic

– Log failures e.g. not loading, wrong data received

– Track failure patterns over time

• Evaluate multiple products or new releases using test suite, to
determine reliability

– Avoids major problems and delays with poor vendor software

• Note that this applies the analysis to a fixed code base

– Fewer problems with statistical validity

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Example certification curve

From http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

RIT Software Engineering Swami NatarajanSeptember 22, 2004

Summary

• Software reliability engineering is a scientific
(statistical) approach to reliability

• Vast improvement over common current practice
– “Keep testing until all our test cases run and we feel

reasonably confident”

• Avoids under-engineering as well as over-
engineering (“zero defects”)

• When done well, SRE adds ~1% to project cost
– Musa’s numbers, my experience: ~10% for medium-sized

projects if you include cost of automated testing

– Note that as the number of builds and releases increases,
automated testing more than pays for itself

