
 

Performance Engineering of 
Real-Time and Embedded Systems 

FPGA Devices 



2 

Field-programmable gate arrays bridge the gap 
between microprocessors and custom hardware. 

 Hardware functions are programmable 
after manufacture. 

Thousands of 

configurable logic 

blocks (CLB) 

Lookup tables, registers, clock management; 

multipliers, counters 



3 

All FPGAs have some common characteristics. 

 Small logic cells 

 Lookup tables as input logic to a register 

 Some memory resources 

 Routing resources 
• Block to block 

• Cross-chip long lines 

 Configurable input/output 



4 

The FPGA device must be configured. 

 Configuration may be persistent in the device or 

loaded at start-up. 

 Persistent device configuration may be 

modifiable or permanently configured. 

 Latest frontier is dynamically reconfigurable 

computing elements. 



5 

Tools take the tediousness out of generating a 
configuration. 

 Map from high-level logic to small configurable 

logic block 

 Very high speed integrated circuit Hardware 

Description Language (VHDL) is the traditional 

way to describe FPGA behavior. 

 
New advanced techniques 

support variants of C, C++ 

and Java. 



6 

FPGA functionality can be built from larger pre-
defined components. 

Adding a “soft” processor core to the 

FPGA is common. 

• Executes real “programs” 

Tiny OSs are available to 

manage resources. 



7 

 Have the capability to replace dedicated digital 
signal processors in some applications 

 No risks or up-front costs for custom designs 
(ASICs) 

 Combine multiple devices (peripherals) and 
“glue” logic into one device. 

 Capacity and features allow FPGAs to take on 
new applications. 

 New design tools make application of FPGAs 
easier. 

As FPGAs improve they are being used in a 
larger number of application areas. 



8 

Tools play a very important role in the use of 
FPGA devices. 

 Provide a good abstraction of the platform 

 Provide mechanical conversion from high-level 

to lower-level description 

 The optimal situation is that the tool “just works” 

without any operator intervention 



9 

The emerging tools focus on creating a software-
oriented design experience. 

 This approach is appropriate for several 

reasons 
• Software is a higher-level abstraction that will 

help manage growing complexity 

• Many algorithms are specified and verified as 

software 



10 

The technology does not eliminate the need for 
detailed hardware design skills. 

 Substantial hardware design skills are still 

needed 

 Optimizations are still needed at the very lowest 

levels but they are reduced 

 Good tools can not save a poor algorithm 



11 

Applications with some specific characteristics 
lend themselves to software design methods. 

 Pay careful attention to the hardware/software 

partitioning 
• Computational requirements 

• Bandwidth requirements 

 Highly parallel applications work well 

 Resist the temptation to off-load functions 

thinking like a remote procedure call 


