

Performance Engineering of
Real-Time and Embedded Systems

QNX Primitives

2

QNX provides some very good documentation
which you get to via Help Help Contents

3

You will probably want to read the Getting Started
guide which comes from the Krten book.

4

If you need to write an interrupt handler look at a
section in QNX Neutrino RTOS.

There is also a

student tutorial

available.

http://www.se.rit.edu/~se463
http://www.se.rit.edu/~se463
http://www.se.rit.edu/~se463
http://www.se.rit.edu/~se463
http://www.se.rit.edu/~se463

5

A section in the IDE info will help if you want to
reduce the number of kernel events captured.

6

QNX is a POSIX-conformant operating system.

 Any POSIX tutorial that you find on the web can

provide examples and information for you.

 QNX scheduling centers around processes and

threads
• You build an application that runs as a process in

its own address space

• Threads execute in the process’ address space

• Each thread gets its own stack allocation

7

pthread_create is the function you use to create a
new thread

#include <pthread.h>

int pthread_create(pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

int pthread_setname_np(pthread_t tid,

 const char* newname);

 There is a student tutorial on working with

threads in an object-oriented environment.

 Naming threads is convenient for tracing

8

QNX provides a standard set of POSIX-conformant
synchronization primitives.

 Semaphores, mutual exclusion

 Message queues

 Timers, alarms

 nano_spin – kill CPU cycles without sleeping

9

If you need to change task priorities for the
dynamic priority scheduling algorithms…

Table 2-2: Task Scheduler Control Routines

 This primitive function will be of interest to you.
• pthread_setschedparam()

Changes a number of scheduling parameters for a thread.

If you think you need to change the default timing
resolution in QNX…

 These functions will be of interest to you.
• clock_getres() Returns the current clock resolution.

• ClockPeriod(), ClockPeriod_r() Get or set a clock period.

10

Timers will be the way that you can wake up a
thread at a specific time.

 You can setup the timers to send a pulse to

you, or to send you a SIGALRM signal
• The pulse you receive by checking MsgReceive

• To receive a signal you specify a callback

function as the signal handler

 There is a student tutorial available for working

with timers in QNX.

11

When working with threads, interrupt handlers,
and signal handlers be aware of safety concerns.

 In this case, safety is from other threads or just

whether it is legal to execute an operation in

that context.

 The description for each OS primitive specifies

its safe usage.

12

When you setup your kernel event logging you
can control what data is captured.

Filter an

entire class

of events

Filter one

type of

event

13

The TraceEvent() function allows you to insert
user events into the kernel event stream.

#include <sys/neutrino.h>

#include <sys/trace.h>

TraceEvent(_NTO_TRACE_INSERTSUSEREVENT,

 int event, int data0, int data1)

TraceEvent(_NTO_TRACE_INSERTCUSEREVENT,

 int event, unsigned * buf, unsigned len)

TraceEvent(_NTO_TRACE_INSERTUSRSTREVENT,

 int event, const char * str)

event must be between _NTO_TRACE_USERFIRST and

_NTO_TRACE_USERLAST

Look at the examples in the System Analysis Toolkit guide.

You can add these statements to your application even if you set up

kernel logging through Momentics.

