

Performance Engineering of
Real-Time and Embedded Systems

Introduction to VHDL

2

VHDL designs are decomposed into blocks.

 A block has an entity/architecture pair.
• Entity describes the interface

• Architecture describes the behavior

reserved words

entity or2 is

 port(a, b : in bit;

 sw : in std_logic_vector(7 downto 0);

 y : out bit);

end entity or2;

architecture arch_or2 of or2 is

begin

 y <= a or b;

end architecture arch_or2;

Port modes: in, out, inout, buffer

List clocks, resets, input,

and output in that order.

3

The architecture defines aspects of the behavior.

architecture_statement::=

architecture ARCHITECTURE_NAME of ENTITY_NAME is

[architecture-item-declaration]

-- here you can declare signals, constants, functions, procedures…

-- component declarations

-- no variable declarations !!!,

begin

 concurrent-statements:

 - concurrent simple signal assignment

 - process statement

 inside process you can use only sequential statements

 - conditional signal assignment

 - selected signal assignment

 - component instantiation statement

 - generate statement

 …………

end;

concurrent

statements

• A concurrent statement is “executed” when an event occurs on

any signal that could effect the value being assigned.

4

Components are used as building blocks and
many can be instantiated.

entity XOR2 is

 port (a, b : in bit; z : out bit);

end XOR;

architecture nand2_gates of XOR2 is

signal s0, s1, s2: bit;

component nand2

 port (a, b : in bit; z : out bit);

end;

begin

 U1: nand2 port map (a, b, s0);

 U2: nand2 port map (a, s0, s1);

 U3: nand2 port map (b, s0, s2);

 U4: nand2 port map (s1, s2, z);

end nand2_gates;

Describes physical connections

 between functional units

5

Constants can be declared for use in other places
in the architecture.

constant NUMBER_OF_BYTES : integer := 4;

constant NUMBER_OF_BITS : integer := 8 * NUMBER_OF_BYTES;

-- constant can be an expression

constant GATE_DELAY : time := 8 ns; -- time is predefined type

constant A, B : bit := ’0’; -- both A and B are equal to ’0’

constant C_VECTOR : bit_vector := ”0001”;

constant constant_name : type_name := constant_value;

6

Signals hold values.

 Use signals as:
• Input and output ports in entities

• Like wires as interconnections between components

inside architecture

• A place holder for a value – model a flip-flop

 They can have history.

signal SIG1 : integer := 5;

signal S1 : bit := ’1’;

signal DATA_BUS : bit_vector (0 to 7);

signal DATA_OUT : std_logic_vector (7 downto 0):= (0=>’1’, others=>’U’);

signal list_of_signal_names : type_name [:= initial_value];

SIG_a <= ’1’;

SIG_b <= not SIG_a;

SIG_c <= a and b;

7

Subtypes allow you to create your own signal
types.

subtype subtype_name is type_description;

subtype error_code is natural range 0 to 8;

constant NO_ERROR : error_code := 0;

constant TOO_HIGH : error_code := 1;

signal error : error_code := NO_ERROR;

8

Variables can hold values similar to standard
programming languages.

variable list_of_variable_names : type_name [:= initial_value];

 Use variables to:
• Hold a single value of a given type.

 Variables can be used and declared only inside
processes.

 They do not have or cause events.

v_a:=’1’;

 v_a:=’0’;

9

You can declare arrays of values of the same data
type.

 Arrays are very useful for buses or grouping of

data.

 type word is array (0 to 31) of bit;

 SIGNAL a: BIT_VECTOR(0 TO 3); -- ascending range

 SIGNAL b: BIT_VECTOR(3 DOWNTO 0); -- descending range

 a <= "0111"; -- double quotes used for vectors

 b <= x"8"; -- indicates hex value

 switches <= sw7 & sw6 & sw5 & sw4; -- concatenate signals

 a(0) <= b(0); -- accessing bits in a vector

type array_type_name is array (discrete range) of element_type;

10

There is a full set of operators available for your
use in expressions.

1. Binary logical operators : and or nand nor xor xnor

2. Relational operators : = /= < <= > =>

3. Shift operators : sll srl sla sla sra rol ror

4. Adding operators : + - & (concatenation)

5. Unary sign operators : + -

6. Multiplying operators : * / mod rem

7. Miscellaneous operators : not abs **

11

VHDL has two types of statements.

 Concurrent
• All statements outside of a process

• A process block is considered one concurrent

statement

• All concurrent statements execute in parallel;

order does not matter

 Sequential
• Evaluated sequentially

• Statements grouped within a process

12

You can make concurrent assignments to signals
conditionally.

Conditional_signal_assignment ::=

target <= [guarded][transport] {waveform when condition else} waveform;

Y <= A when SEL = ”00” else

 B when SEL = ”01” else

 C when SEL = ”11” else

 D;

 First one found true sets value.

 Evaluated when an event occurs

on signal on right side.

selected signal assignment::=

with expression select

 target <= [guarded] [transport]

 {waveform when choices ,}

 waveform when choices;

with SEL select

 Y <= A when ”00”,

 B when ”01”,

 C when ”10”,

 D when others;

 Only one can be true to set value.

 Evaluated when an event occurs

on signal on right side of select.

 Good practice will cover all

values, or have a default.

13

process_statement::=

[process_label:] process [(sensitivity_list)]

 process_declaration_part -- define variables

 begin

 sequence_of_sequential_statements;

 end process [process_label] ;

Process statement groups a set of sequential
statements for execution.

 Process executes when a change occurs in a signal on the

sensitivity list.

 Process sequentially executes statements until end of process or

a wait statement.

 Process has either a wait statement or sensitivity list but not both.
• Sensitivity list resume when an event occurs on any signal in

the sensitivity list

• Wait statement resume when wait condition is met

14

There are several types of statements allowed in
a process.

 Here are some that may be of interest:
• variable assignment ‘:=‘

• signal assignment ‘<=‘

• wait statement (if no sensitivity list)

• if statement

• case statement

15

The if and case statements work as in standard
programming languages.

If_Statement::=

if condition then

 sequence_of_sequential_statements;

{elsif condition then

 sequence_of_sequential_statements;}

[else

 sequence_of_sequential_statements;]

end if;

process (sel, a, b)

begin

 if sel = '1' then

 f <= a;

 else

 f <= b;

 end if;

end process;

Case_Statement::=

case expression is

 when choice(s) =>

 sequence_of_sequential_statements;

 {when choice(s) =>

 sequence_of_sequential_statements;}

 [when others =>

 sequence_of_sequential_statements;]

end case;

process (A, B, C, X)

 begin

 case X is

 when 0 => Z <= A;

 when 7 | 9 => Z <= B;

 when 1 to 5 => Z <= C;

 when others => Z <= 0;

 end case;

end process;

 Again, be sure to cover all values

of input, or have a default.

16

The wait statement causes suspension of the
process execution.

wait for a specific time wait for specific_time;

wait for a signal event wait on signal_event;

wait for a true condition (requires an event) wait until condition;

indefinite (process is never reactivated) wait;

There are several different types of wait statements:

17

An event on a signal represents a change in that
signal.

 Use events to trigger activity on signal edges,

such as, a clock edge.

if rising_edge(clk) then

 cntr <= cntr + 1;

end if;

18

There are many VHDL practices to follow, but
these are ones that are relevant to your work.

 Make sure you define an output for all combinations of

inputs. (Select, case, if…elsif…else)

 Make sure all inputs to combinatorial logic in a process

statement are listed on the sensitivity list.

 For good synchronous design, always use event

checking on the clock, i.e. the clock in a sensitivity list is

not enough.

 Never use events or edges in combinational logic.

 If you set a signal value in a process, do not use that

signal later in that same process.

 Place purely combinational logic, which does not

contribute to sequential operation, outside a process.

19

There are many tutorials available on the web.

 VHDL Mini-Reference
• http://www.eng.auburn.edu/department/ee/mgc/v

hdl.html

 Links to several VHDL Tutorials
• http://www.fpga4fun.com/HDL%20tutorials.html

 Thanks go to Prof. Lukowiak for allowing some

of his notes to be used here.

http://www.eng.auburn.edu/department/ee/mgc/vhdl.html
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html
http://www.fpga4fun.com/HDL tutorials.html
http://www.fpga4fun.com/HDL tutorials.html

20

Software and hardware design are less different

than software designers think, but more

different than hardware designers think.
-- Fred Brooks, Keynote address, OOPSLA 2007

 Father of IBM’s OS360

 Author of The Mythical Man-Month

