

Performance Engineering of
Real-Time and Embedded Systems

Introduction to VHDL

2

VHDL designs are decomposed into blocks.

 A block has an entity/architecture pair.
• Entity describes the interface

• Architecture describes the behavior

reserved words

entity or2 is

 port(a, b : in bit;

 sw : in std_logic_vector(7 downto 0);

 y : out bit);

end entity or2;

architecture arch_or2 of or2 is

begin

 y <= a or b;

end architecture arch_or2;

Port modes: in, out, inout, buffer

List clocks, resets, input,

and output in that order.

3

The architecture defines aspects of the behavior.

architecture_statement::=

architecture ARCHITECTURE_NAME of ENTITY_NAME is

[architecture-item-declaration]

-- here you can declare signals, constants, functions, procedures…

-- component declarations

-- no variable declarations !!!,

begin

 concurrent-statements:

 - concurrent simple signal assignment

 - process statement

 inside process you can use only sequential statements

 - conditional signal assignment

 - selected signal assignment

 - component instantiation statement

 - generate statement

 …………

end;

concurrent

statements

• A concurrent statement is “executed” when an event occurs on

any signal that could effect the value being assigned.

4

Components are used as building blocks and
many can be instantiated.

entity XOR2 is

 port (a, b : in bit; z : out bit);

end XOR;

architecture nand2_gates of XOR2 is

signal s0, s1, s2: bit;

component nand2

 port (a, b : in bit; z : out bit);

end;

begin

 U1: nand2 port map (a, b, s0);

 U2: nand2 port map (a, s0, s1);

 U3: nand2 port map (b, s0, s2);

 U4: nand2 port map (s1, s2, z);

end nand2_gates;

Describes physical connections

 between functional units

5

Constants can be declared for use in other places
in the architecture.

constant NUMBER_OF_BYTES : integer := 4;

constant NUMBER_OF_BITS : integer := 8 * NUMBER_OF_BYTES;

-- constant can be an expression

constant GATE_DELAY : time := 8 ns; -- time is predefined type

constant A, B : bit := ’0’; -- both A and B are equal to ’0’

constant C_VECTOR : bit_vector := ”0001”;

constant constant_name : type_name := constant_value;

6

Signals hold values.

 Use signals as:
• Input and output ports in entities

• Like wires as interconnections between components

inside architecture

• A place holder for a value – model a flip-flop

 They can have history.

signal SIG1 : integer := 5;

signal S1 : bit := ’1’;

signal DATA_BUS : bit_vector (0 to 7);

signal DATA_OUT : std_logic_vector (7 downto 0):= (0=>’1’, others=>’U’);

signal list_of_signal_names : type_name [:= initial_value];

SIG_a <= ’1’;

SIG_b <= not SIG_a;

SIG_c <= a and b;

7

Subtypes allow you to create your own signal
types.

subtype subtype_name is type_description;

subtype error_code is natural range 0 to 8;

constant NO_ERROR : error_code := 0;

constant TOO_HIGH : error_code := 1;

signal error : error_code := NO_ERROR;

8

Variables can hold values similar to standard
programming languages.

variable list_of_variable_names : type_name [:= initial_value];

 Use variables to:
• Hold a single value of a given type.

 Variables can be used and declared only inside
processes.

 They do not have or cause events.

v_a:=’1’;

 v_a:=’0’;

9

You can declare arrays of values of the same data
type.

 Arrays are very useful for buses or grouping of

data.

 type word is array (0 to 31) of bit;

 SIGNAL a: BIT_VECTOR(0 TO 3); -- ascending range

 SIGNAL b: BIT_VECTOR(3 DOWNTO 0); -- descending range

 a <= "0111"; -- double quotes used for vectors

 b <= x"8"; -- indicates hex value

 switches <= sw7 & sw6 & sw5 & sw4; -- concatenate signals

 a(0) <= b(0); -- accessing bits in a vector

type array_type_name is array (discrete range) of element_type;

10

There is a full set of operators available for your
use in expressions.

1. Binary logical operators : and or nand nor xor xnor

2. Relational operators : = /= < <= > =>

3. Shift operators : sll srl sla sla sra rol ror

4. Adding operators : + - & (concatenation)

5. Unary sign operators : + -

6. Multiplying operators : * / mod rem

7. Miscellaneous operators : not abs **

11

VHDL has two types of statements.

 Concurrent
• All statements outside of a process

• A process block is considered one concurrent

statement

• All concurrent statements execute in parallel;

order does not matter

 Sequential
• Evaluated sequentially

• Statements grouped within a process

12

You can make concurrent assignments to signals
conditionally.

Conditional_signal_assignment ::=

target <= [guarded][transport] {waveform when condition else} waveform;

Y <= A when SEL = ”00” else

 B when SEL = ”01” else

 C when SEL = ”11” else

 D;

 First one found true sets value.

 Evaluated when an event occurs

on signal on right side.

selected signal assignment::=

with expression select

 target <= [guarded] [transport]

 {waveform when choices ,}

 waveform when choices;

with SEL select

 Y <= A when ”00”,

 B when ”01”,

 C when ”10”,

 D when others;

 Only one can be true to set value.

 Evaluated when an event occurs

on signal on right side of select.

 Good practice will cover all

values, or have a default.

13

process_statement::=

[process_label:] process [(sensitivity_list)]

 process_declaration_part -- define variables

 begin

 sequence_of_sequential_statements;

 end process [process_label] ;

Process statement groups a set of sequential
statements for execution.

 Process executes when a change occurs in a signal on the

sensitivity list.

 Process sequentially executes statements until end of process or

a wait statement.

 Process has either a wait statement or sensitivity list but not both.
• Sensitivity list  resume when an event occurs on any signal in

the sensitivity list

• Wait statement  resume when wait condition is met

14

There are several types of statements allowed in
a process.

 Here are some that may be of interest:
• variable assignment ‘:=‘

• signal assignment ‘<=‘

• wait statement (if no sensitivity list)

• if statement

• case statement

15

The if and case statements work as in standard
programming languages.

If_Statement::=

if condition then

 sequence_of_sequential_statements;

{elsif condition then

 sequence_of_sequential_statements;}

[else

 sequence_of_sequential_statements;]

end if;

process (sel, a, b)

begin

 if sel = '1' then

 f <= a;

 else

 f <= b;

 end if;

end process;

Case_Statement::=

case expression is

 when choice(s) =>

 sequence_of_sequential_statements;

 {when choice(s) =>

 sequence_of_sequential_statements;}

 [when others =>

 sequence_of_sequential_statements;]

end case;

process (A, B, C, X)

 begin

 case X is

 when 0 => Z <= A;

 when 7 | 9 => Z <= B;

 when 1 to 5 => Z <= C;

 when others => Z <= 0;

 end case;

end process;

 Again, be sure to cover all values

of input, or have a default.

16

The wait statement causes suspension of the
process execution.

wait for a specific time wait for specific_time;

wait for a signal event wait on signal_event;

wait for a true condition (requires an event) wait until condition;

indefinite (process is never reactivated) wait;

There are several different types of wait statements:

17

An event on a signal represents a change in that
signal.

 Use events to trigger activity on signal edges,

such as, a clock edge.

if rising_edge(clk) then

 cntr <= cntr + 1;

end if;

18

There are many VHDL practices to follow, but
these are ones that are relevant to your work.

 Make sure you define an output for all combinations of

inputs. (Select, case, if…elsif…else)

 Make sure all inputs to combinatorial logic in a process

statement are listed on the sensitivity list.

 For good synchronous design, always use event

checking on the clock, i.e. the clock in a sensitivity list is

not enough.

 Never use events or edges in combinational logic.

 If you set a signal value in a process, do not use that

signal later in that same process.

 Place purely combinational logic, which does not

contribute to sequential operation, outside a process.

19

There are many tutorials available on the web.

 VHDL Mini-Reference
• http://www.eng.auburn.edu/department/ee/mgc/v

hdl.html

 Links to several VHDL Tutorials
• http://www.fpga4fun.com/HDL%20tutorials.html

 Thanks go to Prof. Lukowiak for allowing some

of his notes to be used here.

http://www.eng.auburn.edu/department/ee/mgc/vhdl.html
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html
http://www.fpga4fun.com/HDL tutorials.html
http://www.fpga4fun.com/HDL tutorials.html

20

Software and hardware design are less different

than software designers think, but more

different than hardware designers think.
-- Fred Brooks, Keynote address, OOPSLA 2007

 Father of IBM’s OS360

 Author of The Mythical Man-Month

