
1

Performance Engineering of
Real-Time and Embedded Systems

VxWorks Primitives

2

VxWorks provides a very rich set of primitives
that can appear daunting.

2

3

You will probably want to read an overview
description of VxWorks.

• 2.2 VxWorks Tasks

• 2.3 Intertask Communications

• 2.4 VxWorks Events

• 2.5 Watchdog Timers

• 3.0 POSIX Standard Interfaces

4

VxWorks v5.5 uses a flat address space in which
to execute all tasks.

VxWorks scheduling centers around tasks
• Tasks execute in the same address space
• Each task gets its own stack allocation
• Can use VxWorks or POSIX task primitives.

VxWorks provides standard synchronization
primitives
• Semaphores, mutual exclusion
• Message queues
• Events

3

5

Task activities
• Context switching
• Priority setting
• Synchronization events
• …

User generated events
• wvEvent

Trigger actions to occur when WindView detects
an event

There is a variety of activities that you can
monitor using WindView.

6

If you need to change task priorities for the
dynamic priority scheduling algorithms…

Table 2-2: Task Scheduler Control Routines

This primitive function will be of interest to you.
• taskPrioritySet() Changes the priority of a task.

If you want to do timing analysis with greater
than 60Hz resolution…

This primitive function will be of interest to you.
• sysClkRateSet() Changes the number of ticks per second.

4

7

Watchdog functions execute as interrupt service
code.

Watchdog functions run at the interrupt level of
the system clock.
• Compare to POSIX timers that send SIGALARM

to a task when it is next scheduled.
Watchdog functions execute in a context
outside of all task contexts.
Watchdog functions should execute quickly.
• No printfs – use message library
• No calls which block

8

There are limits to what you can do in a watchdog
function.

Watchdog to task communication
• Shared memory
• semGive except mutual exclusion semaphores
• Message queues – will discard instead of block

Some function calls allowed in watchdogs
• wdStart(), wdCancel()
• logMsg(), msgQSend()
• semGive()
• kill()
• taskSuspend(), taskResume(), taskPrioritySet(),

taskPriorityGet(), taskIdVerify(), taskIdDefault(),
taskIsReady(), taskIsSuspended()

5

9

You can write VxWorks tasks in C or C++.

C++ Development in VxWorks
Heed this warning:

