
Control System Plant Simulator:

A Framework for Hardware-In-The-Loop Simulation

Abstract

Control systems courses are common in undergraduate engineering programs. These courses

focus on the design of the controller’s mathematical model but rarely have students explore the

practical issues of implementing the controller. Real-time and embedded systems courses focus

on these practical issues with students implementing controllers for simplified Hardware-in-the-

Loop plants such as a digital servo motor. Designing controllers for complex physical plants is

difficult due to prohibitive costs or the risk of accidents caused by faulty controllers. These

difficulties can be overcome if a simulator replaces the hardware-in-the-loop physical plant.

We designed and implemented the Control System Plant Simulator (CSPS) as a flexible

framework for simulating plant models in control system implementation projects. The

framework allows the user to model continuous and discrete plants defined as transfer functions

or systems of state-space equations. This paper describes the design of the CSPS framework by

highlighting the expansion and modification flexibility it provides with its operating system,

non-real-time user interface, and physical device abstraction layers. The CSPS framework has

advantages over commercial tools that can provide a hardware-in-the-loop plant simulation. The

framework’s scope of usage is much narrower than the commercial tools making it easier to

learn how to use and modify. Also, we distribute the framework as an open-source project

making it readily available for use in any course without licensing, and ensuring that deeper and

more complex customizations are possible. The paper concludes with a discussion of our

successful experience using the framework in real-time systems course projects, and porting to

two operating environments (standard Windows XP and Ardence RTX Real-Time Extensions for

Windows), two user interfaces (C-based text, Visual Basic GUI), and two data acquisition

devices (USB data acquisition, simulated multi-channel IO device).

Introduction

The popularity and importance of automated controllers has grown rapidly over the past few

decades
1
. The subject of Control systems has grown in importance in education as well. There

are numerous challenges educators must face when teaching a control systems course. Students

learn far more from their studies when they have an actual laboratory experiment to help relate

the abstract concepts of engineering to real life design problems
2
. While simplified physical

systems such as the inverted pendulum or the digital servo are common in academic

environments, design for more practical systems is difficult due to the prohibitive costs or danger

associated with the equipment involved
3
.

Simulation of the entire system enables the designer to see what is going to happen before

spending considerable effort implementing a design or putting expensive equipment – and

potentially human life – at risk with an untested controller. However, one cannot ignore the

physical experimentation phase as part of the design and implementation of controllers
4
. Klee

and Dumas argue that, “The combination of hands-on experience and computer simulation with

the more traditional theoretical lecture material provides a well rounded learning experience that

better prepares the students to implement digital control systems in the real world.”
4
. They

describe a three-step course for undergraduate students that begins with theory and the design of

the digital controller mathematically. Students then use simulations to work out any problems

with the theoretical design. Finally, the controller is implemented and connected to real physical

hardware. This ‘start-to-finish’ design and implementation is invaluable to students as it

provides the complete picture.

The argument that students must implement their controller designs and attempt to actually run

their controllers on plants has been made before. Some educators bemoan the recent trend

“towards increased use of simulation in engineering education, coupled with a decline of the use

of physical experiments.”
2
. They admit that the expense of physical equipment is prohibitive,

but outline a number of reasons why it is important to implement physical controllers. “The

typical student therefore finds it motivating to work with laboratory experiments. A successful

laboratory experiment is some proof that the student has been able to perform a task which is of

relevance to the real world.”
2
. Accepting MATLAB simulations as proof that a controller has

been designed properly changes classes in digital control engineering to courses that teach little

more than mathematics.

Control system simulators have been developed in the past. The Stanford Universal Plant
5
 was

one such simulator used in academic course work. This provided analog simulation of plants

based on simulation boards plugged into the chassis. The plant models could not be easily

changed and did not handle discrete or state-space plant models. The Shadow Plants Dynamic

Simulation Testbed
6
 by Honeywell is an example of a commercial plant simulator. Typically,

this is tailor-made for specific situations, products, or markets. Additionally, it is prohibitively

expensive, which reduces their ability to be widely adopted. Another possible solution is to use

commercial simulation software such as Simulink
®
 or LabView

®
driving a data acquisition

board. These environments provide the mathematical simulations needed for modeling the plant

system and will often support extendable interfaces for both user interfaces and interfaces to data

acquisition devices. There is licensing of these commercial packages that may limit wide-spread

use of the software. Also, we have found that there is a steep learning curve before one can be

productive creating models, custom user interfaces, and interfaces to new data acquisition

boards.

The Control System Plant Simulator (CSPS) Framework addresses all of these issues:

• Current plant simulation frameworks are very expensive. The CSPS framework is an

open source project, provided at no cost.

• Most simulators are designed to simulate the mathematical model of a plant or controller,

and provide information about how these models interact. These simulators cannot test

the implementation of these designs. The CSPS framework runs a hardware-in-the-loop

simulation that takes the place of a physical plant. It is designed to be connected to an

implemented controller, and behave as a real plant would.

• Hardware-in-the-loop test simulations have been made for specific situations, products,

or markets. The CSPS framework provides a general framework upon which plants of

different natures may be simulated by simply providing a model of the plant.

• The CSPS framework is extendable. User interfaces, plant descriptions, and physical

interfaces may be updated or customized with little effort.

• Most hardware-in-the-loop simulators require specialized equipment or test boards to run.

The CSPS framework is a Windows XP application that can run in real-time provided the

proper Windows extensions have been installed, and can be ported to other operating

systems such as Linux.

Control System Plant Simulator (CSPS) Design

The CSPS framework is designed as a Hardware-In-The-Loop simulation framework.

Hardware-In-The-Loop simulation replaces physical hardware with a simulated model
7
. In a

traditional controller-plant setup, a computer runs an implementation of the digital controller, as

shown in Figure 1. The controller sends control signals through a data acquisition device to the

inputs of the plant. The plant physically responds to these input signals, as sensors monitor the

state of the plant and provide output signals to the controller. A Hardware-In-The-Loop

simulated plant behaves the same way as a physical plant does. Viewed from a black box

perspective, a plant launched under the CSPS framework appears to be the same as a real plant to

the connected controller.

Figure 1: CSPS and Physical Plant Comparison

The CSPS framework is designed with academic environments in mind. It is of the utmost

importance that students be able to implement their designs as physical controllers. It is often

too expensive or dangerous to test these controllers with a physical plant as hardware-in-the-

loop. The CSPS framework can be used in place of this equipment, and provide results to

determine the effectiveness of the controller. The software is an open-source project

(http://www.se.rit.edu/~rtembed/csps) which allows use of the CSPS framework on any

laboratory computer. This provides each student with a simulated plant when testing an

implemented controller without the constraints of limited or unavailable lab equipment. The

CSPS framework can simulate many different kinds of plants with different needs for visualizing

the plant operation. Using the CSPS’s flexible front-end, users may implement a specific text-

based or graphical user interface for the simulated plant. The CSPS’s operating system

abstraction layer provides for easy porting to new operating systems. This abstraction layer

provides an interface to all operating system calls thus localizing changes when porting to a new

operating system. Similarly, there is an abstraction layer for the data acquisition hardware.

The CSPS Framework simplifies the physical requirements for the experimentation phase of

control systems education. Instead of making the decision between asking students to design

controllers for low-cost plants that are too simple to be realistic, and never attempting to control

anything at all, educators may now elect to simulate the physical hardware using the CSPS

framework. Students may perfect their designs at their own workstations without the need of

additional equipment.

CSPS Framework Software Architecture

The CSPS Framework is a set of three applications that interact with each other during the

simulation. Two main considerations led to this implementation. The first is that Ardence
®

RTX
®

 Real-Time Extensions for Windows was used to ensure real-time processing from within

Windows. RTX
®

applications are kernel mode applications that must be run in their own process

space. Typical RTX
®

applications consist of a Win32 non-realtime process and an RTX
®

process that manages what must be run in real-time. The second consideration was that a user

may wish to simulate any plant possible, each with different user interface requirements. To

achieve this level of flexibility, the CSPS user interface is an interchangeable program that may

be written by end users to match the plant they wish to simulate.

The three main process spaces are the Win32 process, the Computation process, and the User

Interface process. These processes communicate through pairs of defined unidirectional

interfaces as shown in Figure 2.

The Win32 process is the main process in the system. At framework start-up, it launches the

other two processes and serves as a bridge between the user interface and the computation core.

The Win32 process performs all error checking, all pre-simulation configuration management,

and all file system interactions.

The Computation process runs the actual simulation. This process handles all interactions with

the connected data acquisition device as well. During a simulation it reads data from the data

acquisition device, processes it, calculates a set of output values, and writes those output values

to the data acquisition device. Should a user wish to use a different data acquisition device, a

small portion of this process must be ported for the new device.

http://www.se.rit.edu/~rtembed/csps

Figure 2: System Design

The User Interface process is not within the bounds of the framework: Framework users can

provide a User Interface application specific to the plant being simulated. A user may wish to

simulate water entering and leaving a tank, and would like to see water levels rise and fall

graphically. Another user may wish to simulate an inverted pendulum and would like to see the

pendulum alter position dynamically. Others may elect for simple text based user interfaces that

only offer students the ability to start and stop a pre-determined plant. Individual users and

implementers are expected to create their own user interface application to go along with the

plant they wish to simulate. A dynamic linked library is provided to give implementers an API

to use when developing their user interfaces. In addition, two fully functional user interfaces, a

text-based console application and a Visual Basic graphical user interface, are provided as

examples of how to use the API.

Configuration and Simulation

The CSPS must be properly configured before it can simulate a plant. Configuration of the

CSPS consists of defining a plant, and connecting the inputs and outputs of the plant to a data

acquisition device.

The CSPS framework API provides a number of different ways to define a plant. The preferred

method is for users to enter a plant as a set of state space matrices, but the framework also

supports entry as a transfer function, a matrix of transfer functions, or a nonlinear equation.

User Interface Process

Ui to Win32
Outgoing

Interface

Win32 to UI

Incoming
Interface

Win32 Process

UI to Win32
Incoming

Interface

Win32 to UI

Outgoing

Interface

Win32 to Comp

Outgoing

Interface

Comp to Win32
Incoming

Interface

Computation Process

Win32 to Comp

Incoming

Interface

Comp to Win32
Outgoing

Interface

Process

Boundary
Process

Boundary

Non-Real-
Time OS

Interface

Non-Real-

Time OS

Interface

Real-Time

OS

Interface

Real-Time

OS

Interface

Non-Real-Time OS
(Windows)

Real-Time OS (RTX®)

 Data

Acquisition
Device

CSPS Framework

Transfer functions may be provided either as the coefficients of the terms in the numerator and

denominator polynomials, or as a set of poles and zeros. No matter how a transfer function is

provided, the CSPS framework will convert it to a state space matrix for simulation. Plants

may be either continuous or discrete. The CSPS will discretize continuous plants via one of

three available discretization methods: forward rectangular, backward rectangular, and bilinear.

Future developers may add more discretization methods as they see fit. The CSPS framework

provides the ability to save plants to, or load plants from, a text file. This file is ASCII based and

may be written by users outside of the CSPS environment as well.

When a data acquisition device is connected to the CSPS framework, its physical interfaces are

abstracted by Physical Ports within the system. The CSPS framework writes to, and reads from

these physical ports when it wants to send or retrieve data from the controller. It is expected that

at a particular workstation the data acquisition unit will not often change, but the plant to be

simulated is likely to be altered quite often. This means that plants with different input/output

characteristics will have to interface with the same set of available physical ports. Physical ports

are mapped to the inputs and outputs of the user-defined plant via user defined ‘Pseudo Ports’.

Pseudo ports connect physical ports to the inputs and outputs of a defined plant, and convert the

data received from the physical interface to engineering values that are meaningful to the plant.

Physical and pseudo ports may be either digital or analog. Digital pseudo ports may divide

larger digital physical ports into smaller ports for added flexibility. For example, a 32 bit

physical interface may be divided into two 16 bit pseudo ports. Analog pseudo ports scale the

data read by the analog physical ports linearly to meaningful engineering values. For example, a

data acquisition unit may have an input range between -10 and +10 volts. An engineering value

from the controller may be mapped to this interface that represents values between 50 and 100

PSI. The mapped analog pseudo port scales the input from the physical port to the proper

engineering values for the plant to use. The CSPS framework can save pseudo port

configurations to text based files. It can load pseudo port configurations from these files as well.

To prevent long read or write times from impacting simulation performance, the CSPS

framework accesses connected data acquisition devices on a separate thread of execution. This

thread periodically reads the input physical ports and stores the results in a cache. It will also

write data in the cache to the output physical ports. During a simulation, the input pseudo ports

will convert the physical port data to engineering values, and provide them to the simulated

plant’s inputs. Once the simulation has calculated output values, output pseudo ports convert the

engineering values back to physical values and store them in the cache to be written to physical

output during the next I/O update cycle. The user may schedule how often each physical port is

read or updated individually. This allows some interfaces with fast access times to be read often,

while slower interfaces may be left alone for longer periods of time.

The CSPS framework provides the ability to log three different kinds of messages. Informational

messages simply provide information about the current status of the system. Critical messages

are provided to inform the user of severe system errors, such as when the simulation misses a

deadline. I/O messages provide the current value of the inputs and outputs of the plant. These

messages are available to the user interface, and may be captured to files. Informational and

Critical messages are saved as text files. I/O messages are logged as comma delimited files for

easy import to other programs. The user can configure the rate at which the framework

generates I/O messages. All file operations are done in the Win32 process so that there is no

impact on the real-time performance of the framework.

Evaluation

There are two versions of the Computation process for the CSPS framework. One version runs as

a real-time process under RTX. The second version runs as a standard Windows process making

for a simulation running entirely within the Windows environment. The RTX CSPS framework

was run using a simulated interface that replicated physical port behavior by writing to or

reading from shared memory locations that specifically designed CSPS framework physical ports

would access during read or write operations. The Windows CSPS framework was connected to

a Data Translations DT-9812 data acquisition device. This data acquisition device has a USB

interface which was not supported by RTX.

The CSPS framework was tested using a number of different plants in order to prove how

effective it can be. A MATLAB simulation was the baseline used to check the accuracy of the

CSPS framework. The unit step responses of the following plants were simulated open loop with

no external controller:

A Simple Spring-Mass Plant
8
:

An Airplane Pitch Controller
9
:

A bus active suspension system
9
:

A Car and Wheel Shock Absorber System
8
:

Each of these simulated plants had data collected at various points in time. The measured data is

provided in the following table:

Plant
CSPS

Version
Expected Value Simulated value % difference

0.15 at 1.26 sec 0.14 at 1.26 sec -6.6%

0.251 at 2.26 sec 0.25 at 2.26 sec -0.4% Win32

0.329 at 5.38 sec 0.33 at 5.38 sec +0.3%

0.15 at 1.26 sec 0.148 at 1.3 sec -1.3%

0.251 at 2.26 sec 0.251 at 2.3 sec 0%

Spring-Mass

RTX
®

0.329 at 5.38 sec 0.33 at 5.4 sec +0.3%

0.44 at 4.57 sec 0.44 at 4.56 sec 0%

0.468 at 6.83 sec 0.46 at 6.80 sec -1.7% Win32

0.838 at 16.1 sec 0.812 at 16.1 sec -3.1%

0.44 at 4.57 sec 0.44 at 4.6 sec 0%

0.468 at 6.83 sec 0.47 at 6.8 sec +0.4%

Airplane Pitch

RTX
®

0.838 at 16.1 sec 0.84 at 16.1 sec +2.4%

2.23e-5 at 0.633 sec 2.04e-5 at 0.64 sec -8.5%

3.55e-6 at 1.25 sec 3.30e-5 at 1.28 sec -7.0% Win32

1.29e-5 at 28.2 sec 1.02e-5 at 28.2 sec -20.9%

2.23e-5 at 0.633 sec 2.2e-5 at 0.6 sec -1.34%

3.55e-6 at 1.25 sec 4.0e-6 at 1.2 sec +15%

Bus

Suspension

RTX
®

1.29e-5 at 28.2 sec 1.3e-5 at 28.2 sec +0.8%

1.42 at 1.34 sec 1.52 at 1.38 sec +7.0% Win32

Car Pos 0.988 at 6.14 sec 1.02 at 6.14 sec +3.2%

1.26 at 1.24 sec 1.22 at 1.24 sec -3.2% Win32

Wheel Pos 0.955 at 5.76 sec 0.98 at 5.76 sec +2.6%

1.42 at 1.34 sec 1.42 at 1.3 sec 0% RTX
®

Car Pos 0.988 at 6.14 sec 0.988 at 6.1 sec 0%

1.26 at 1.24 sec 1.26 at 1.2 sec 0%

Car Shock

System

RTX
®

Wheel Pos 0.955 at 5.76 sec 1.00 at 5.8 sec 4.7%

In most cases, the results were quite good, especially considering the fact that the physical

simulations were of discrete equivalents, sampled at only ten hertz, of the continuous plants

simulated in MATLAB. Additionally, these simulations were not produced in real-time. For the

Windows simulation, the bus suspension system produced poor results, with one value as bad as

20% off from what was expected. The bus suspension system naturally produces very small

output values that range between 0 and 3e-5. This was far too low to send to the analog output

lines, so pseudo-port scaling was enacted, magnifying output by over 65000 times. Any errors

would be considerably magnified. In addition, this system ran for the longest period of time,

compounding the effects of non-real-time operation.

As for RTX simulation, there was only one measurement that experienced a percent difference

greater than 5: The bus suspension system simulation experienced a 15 percent difference at

1.25 seconds. However, this is not an accurate comparison as the simulation only produced

values at 1.2 and 1.3 seconds. Comparing this with a value measured at 1.25 seconds is not

completely valid. The value measured at 1.3 sec was 3.0e-6, making a value of 3.55e-6 at 1.25

quite likely.

The following images show captures of the oscilloscope plots compared to MATLAB

simulations of the plants, demonstrating how closely the CSPS framework matches the expected

continuous results:

Figure 3: MATLAB and CSPS Simulation of Step Response to Spring Mass System

Figure 3 consists of the MATLAB simulation of the step response to the spring-mass system on

the left, and an oscilloscope capture of the output of the CSPS simulation of the step response to

the same system on the right. This simulation has a very small steady state value of

approximately 300 millivolts. This shows that the CSPS is accurate even under situations where

the output changes very slightly.

Figure 4: MATLAB and CSPS Simulation of Step Response to Airplane Pitch System

Figure 4 consists of the MATLAB simulation of the step response to the Airplane Pitch plant on

the left, and an oscilloscope capture of the output of the CSPS simulation of the step response to

the same system on the right. Again the characteristics are very similar.

Figure 5: MATLAB and CSPS Simulation of Step Response to Bus Suspension System

Figure 5 consists of the MATLAB simulation of the step response to the bus suspension system

plant on the left, and an oscilloscope capture of the output of the CSPS simulation of the step

response to the same system on the right. As stated earlier, the maximum and minimum values

for this plant are exceptionally small, so this system made use of the CSPS’s ability to scale plant

engineering values up to larger physical values.

Figure 6: MATLAB and CSPS Simulation of Step Response to Car Shock System

Figure 6 consists of the MATLAB simulation of the car and wheel shock absorption plant on the

far left. The middle image is of an oscilloscope capture of the output of the CSPS simulation of

the system step response of the car position, and the rightmost image is an oscilloscope capture

of the wheel position. Here one can see the ability of the CSPS to provide multiple outputs

faithfully.

The CSPS Framework was also provided to a class of graduate and undergraduate Software

Engineering and Computer Engineering students. The students used the CSPS framework to

develop simple VxWorks controllers. The project required them to manually tune the

coefficients of a standard Proportional-Integral-Derivative controller to minimize the overshoot

and settling time of the plant. They did not know the plant model and tuned the controller

experimentally. The exercise was a success as the students were able to construct reasonable

controllers that produced physical signals to control the simulated plant. There were no

complaints or problems using the CSPS framework for this project.

Conclusion

Control system education benefits greatly by having students develop real controllers that are

connected to real systems to monitor the success or failure of their controller designs and

implementations. Students gain the benefit of building and debugging their controller

implementation, as well as, a sense of accomplishment that is missing when dealing with control

systems in strictly mathematical terms
2
. The CSPS framework, designed for use in control

system coursework, provides a suite of applications that make debugging of controllers possible

without the use of expensive or dangerous equipment. Comparatively inexpensive data

acquisition systems and common Windows workstations can be used instead. The framework is

flexible, and provides plenty of hooks upon which end users may attach their own interfaces and

data acquisition systems. It is accurate, and has been used in an academic environment as a

teaching tool with good success. The CSPS framework is available at no cost for academic, non-

commercial use as an open-source project at http://www.se.rit.edu/~rtembed/csps. We hope that

users will customize it, update and enhance it, build their own plants and user interfaces for it,

and share their extensions thus creating a community library of functional Hardware-In-The-

Loop simulations to be used by students everywhere.

Bibliography

1. Ogata, K., Modern Control Engineering. 2002, Englewood Cliffs: Prentice Hall.

2. Foss, B.A., T.I. Eikaas, and M. Hoyd. "Merging Physical Experiments Back Into the Learning Arena".

Proceedings of the 2000 American Control Conference. 2000. Chicago, IL.

3. Juang, J.-C. "Controller Rapid Prototyping and its Incorporation in Control Education". Proceedings of the

Proceedings of the 4th IFAC Symposium on Advances in Control Conference. 1997. Istanbul.

4. Klee, H. and J. Dumas, "Theory, Simulation, Experimentation: An Integrated Approach to Teaching Digital

Control Systems". IEEE Transactions on Education, 1994. 37(1).

5. Franklin, G.F. and J.D. Powell, "Digital Control Laboratory Courses". IEEE Control Systems, 1989. 9(3).

6. Olukotun, K., M. Heinrich, and D. Ofelt. "Digital System Simulation: Methodologies and Examples".

Proceedings of the Proceedings of the 1998 Design Automation Conference. 1998.

7. Grega, W. "Hardware-in-the-loop Simulation and its Application in Control Education". Proceedings of the

Frontiers in Education Conference. 1999.

8. Messner, W.C., et al. "Modeling Tutorials for MATLAB and Simulink". [acessed May 2006]; Available from:

http://www.me.cmu.edu/ctms.

9. Messner, W.C. and D. Tilbury, Control Tutorials for MATLAB and Simulink: A Web-Based Approach. 1998,

Englewood Cliffs: Prentice Hall.

http://www.se.rit.edu/~rtembed/csps
http://www.me.cmu.edu/ctms

