
Joe Richardson
Andrew Fitzgerald

Tutorial

1. Follow the following hyperlink to get the version of picoblaze for the Spartan III
FPGA: http://www.xilinx.com/products/ipcenter/picoblaze-VE-S2.htm

*Note: You will need a Xilinx user account. It’s free to create and will allow you access
to the download area. You will have to fill out a brief survey regarding your usage of
picoblaze as well.

2. Proceed to the picoblaze lounge next. It will be a link provided to you after
completing the above.

http://www.xilinx.com/products/ipcenter/picoblaze-VE-S2.htm

3. Download the resource files for the Spartan III FPGA.

4. Once you’ve extracted the zip file to some rewritable directory on your account, the
file containing the picoblaze processor is KPCSM3.vhd specifically. This file should
then be included in your Xilinx project.

5. The next step would be to create your assembly language file that will be converted
into a .vhd file to be included in your Xilinx project as well.

Sample Assembly language file to read from the switches and display on the LEDs.

Note: The comments (; denotes a commented line in assembly) at the beginning of the
file should be uncommented when using the picoblaze IDE included with the downloaded
files. Please see
http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.ht
m for more information regarding the ISA.

; switches DSIN $00
; buttons DSIN $01
; LEDS DSOUT $02
; segments DSOUT $03

INPUT s0,00
OUTPUT s0,02
JUMP 000

http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.ht

6. The next step is to transform the assembly code into a *.vhd file that can then be added
into your Xilinx project to act as an instruction ROM. The KCPSM3.EXE included with
the Xilinx picoblaze files is the assembler that performs this step. To run the assembler,
navigate to your working directory with the command prompt, then enter
%location_of_picoblaze_extraction%/KPCSM3.exe followed by the name of your
assembly language file. The location extraction directory should contain KCPSM3.exe,
ROM_form.coe, ROM_form.vhd, and your assembly language file(.psm).

*Note: If the temporary directory on your current machine is not writable, you will see
the following error:

and your assembly language file WILL NOT be converted. This can be resolved by
asking the current lab manager to make the Windows temporary directory writable.

7. After the file completes, the assembler creates many files. These files are shown
below and are not highlighted.

The created file, in our case tutorial.vhd, can then be added into your Xilinx project.

8. Within your Xilinx project, you will need a new top level file to connect the picoblaze
processor with your newly generated program ROM from your assembly language file.
is can be done with simple port maps, as shown below:

**
-- Top level VHDL for PICOBLAZE TEST for ELEC4200
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity picotest is
 Port (switches : in std_logic_vector(7 downto 0);
 LEDS : out std_logic_vector(7 downto 0);
 clk : in std_logic);
 end picotest;
architecture Behavioral of picotest is
-- declaration of KCPSM3 (always use this declaration to call up PicoBlaze
core)
 component kcpsm3
 Port (address : out std_logic_vector(9 downto 0);
 instruction : in std_logic_vector(17 downto 0);
 port_id : out std_logic_vector(7 downto 0);
 write_strobe : out std_logic;
 out_port : out std_logic_vector(7 downto 0);
 read_strobe : out std_logic;
 in_port : in std_logic_vector(7 downto 0);
 interrupt : in std_logic;
 interrupt_ack : out std_logic;
 reset : in std_logic;
 clk : in std_logic);
 end component;
-- declaration of program memory (here you will specify the entity name as your
.psm prefix name)
 component tutorial
 Port (address : in std_logic_vector(9 downto 0);
 instruction : out std_logic_vector(17 downto 0);
 clk : in std_logic);
 end component;
-- Signals used to connect PicoBlaze core to program memory and I/O logic
signal address : std_logic_vector(9 downto 0);
signal instruction : std_logic_vector(17 downto 0);
signal port_id : std_logic_vector(7 downto 0);
signal out_port : std_logic_vector(7 downto 0);
signal in_port : std_logic_vector(7 downto 0);
signal write_strobe : std_logic;
signal read_strobe : std_logic;
signal interrupt_ack : std_logic;
-- the following 2 inputs are assigend inactive values since they are unused in
this example
signal reset : std_logic :='0';
signal interrupt : std_logic :='0';
-- Start of circuit description
begin
 -- Instantiating the PicoBlaze core
 processor: kcpsm3
 port map(address => address,
 instruction => instruction,
 port_id => port_id,
 write_strobe => write_strobe,
 out_port => out_port,
 read_strobe => read_strobe,
 in_port => in_port,
 interrupt => interrupt,
 interrupt_ack => interrupt_ack,
 reset => reset,
 clk => clk);
 -- Instantiating the program memory
 program: tutorial
 port map(address => address,
 instruction => instruction,
 clk => clk);

 -- Connect Input to PicoBlaze

 process(port_id, clk, read_strobe)
 begin
 if clk'event and clk='1' then
 if read_strobe='1' then
 case port_id is
 when x"00" => in_port <= switches;
 when x"01" => in_port <= "00000" & buttons(3
downto 1);
 when others => null;
 end case;
 end if;
 end if;
 end process;

 -- Connect Output from PicoBlaze
 process(port_id, clk, write_strobe)
 begin
 if clk'event and clk='1' then
 if write_strobe='1' then
 case port_id is
 when x"02" => LEDs <= out_port;
 when x"03" => ssegVal <= out_port(3 downto 0);
 when others => null;
 end case;
 end if;
 end if;
 end process;

end Behavioral;
**

9. Add in your user constraints to map to your chosen inputs and outputs.

**
NET "clk" LOC = "T9";

NET "switches<0>" LOC = "F12";
NET "switches<1>" LOC = "G12";
NET "switches<2>" LOC = "H14";
NET "switches<3>" LOC = "H13";
NET "switches<4>" LOC = "J14";
NET "switches<5>" LOC = "J13";
NET "switches<6>" LOC = "K14";
NET "switches<7>" LOC = "K13";

NET "LEDs<0>" LOC = "K12";
NET "LEDs<1>" LOC = "P14";
NET "LEDs<2>" LOC = "L12";
NET "LEDs<3>" LOC = "N14";
NET "LEDs<4>" LOC = "P13";
NET "LEDs<5>" LOC = "N12";
NET "LEDs<6>" LOC = "P12";
NET "LEDs<7>" LOC = "P11";

NET "buttons<0>" LOC = "M13";
NET "buttons<1>" LOC = "M14";
NET "buttons<2>" LOC = "L13";
NET "buttons<3>" LOC = "L14";

NET "segments<0>" LOC = "P16";
NET "segments<1>" LOC = "N16";
NET "segments<2>" LOC = "F13";
NET "segments<3>" LOC = "R16";
NET "segments<4>" LOC = "P15";
NET "segments<5>" LOC = "N15";
NET "segments<6>" LOC = "G13";
NET "segments<7>" LOC = "E14";

NET "anodes<0>" LOC = "D14";
NET "anodes<1>" LOC = "G14";
NET "anodes<2>" LOC = "F14";
NET "anodes<3>" LOC = "E13";
**

10. Generate your programming file and you’re done.

Note: You can change address for any of the inputs/outputs by changing the port_id
values in the case statements.

Debugging PicoBlaze programs

Our preferred way to debug PicoBlaze programs was to make use of the FPGA LEDs and
the seven segment display. So if you needed to see the value of some variable just dump
it to the seven segment display. If seven digits wasn’t enough we added a windowing
feature to our display so one button would scroll forward and one would go backwards.
The size of the buffer for the seven segment display is a generic value that can easily be
changed to be larger or smaller, depending on the needs of the user. Since our project
makes use of states, we decided to use the LEDs to help debug that. So each LED
corresponded to a state and the one that was lit was the current state. After we were
assured this was working properly, we removed the LED correspondence.

A program called ChipScope is rumored to be able to debug PicoBlaze programs, but
there isn’t much information out there about that just yet. On a question and answer site
some one asked how to debug PicoBlaze programs with ChipScope and here was the
answer. “If you dump the address, instruction, and cpu_clock signals into Chipscope and
then print out the .log file, it is quite easy to get Chipscope to trigger on any instruction
that you want.” Here is a link to that page
http://forums.xilinx.com/xlnx/board/message?board.id=PicoBlaze&thread.id=101

http://forums.xilinx.com/xlnx/board/message?board.id=PicoBlaze&thread.id=101

Interfacing between PicoBlaze and FPGA hardware

The interfacing between PicoBlaze and FPGA hardware is very simple. The inputs and
outputs to PicoBlaze must be mapped to hardware pins. Below is a simple example of
this.

Section of PicoBlaze program
; switches DSIN $00
; buttons DSIN $01
; LEDS DSOUT $02
; segments DSOUT $03

INPUT s0,01
OUTPUT s0,03
JUMP 000

Section of VHDL
entity picotest is Port (
 switches : in std_logic_vector(7 downto 0);
 LEDS : out std_logic_vector(7 downto 0);
 clk : in std_logic);
end picotest;

-- Connect Input to PicoBlaze
process(port_id, clk, read_strobe)
begin
 if clk'event and clk='1' then
 if read_strobe='1' then
 case port_id is
 when x"00" => in_port <= switches;
 when x"01" => in_port <= "00000" & buttons(3 downto 1);
 when others => null;
 end case;
 end if;
 end if;
end process;

-- Connect Output from PicoBlaze
process(port_id, clk, write_strobe)
begin
 if clk'event and clk='1' then
 if write_strobe='1' then
 case port_id is
 when x"02" => LEDs <= out_port;
 when x"03" => ssegVal <= out_port(3 downto 0);
 when others => null;
 end case;
 end if;
 end if;
end process;

Section of Constraint file
NET "switches<0>" LOC = "F12";
NET "switches<1>" LOC = "G12";
NET "switches<2>" LOC = "H14";

NET "switches<3>" LOC = "H13";
NET "switches<4>" LOC = "J14";
NET "switches<5>" LOC = "J13";
NET "switches<6>" LOC = "K14";
NET "switches<7>" LOC = "K13";

NET "LEDs<0>" LOC = "K12";
NET "LEDs<1>" LOC = "P14";
NET "LEDs<2>" LOC = "L12";
NET "LEDs<3>" LOC = "N14";
NET "LEDs<4>" LOC = "P13";
NET "LEDs<5>" LOC = "N12";
NET "LEDs<6>" LOC = "P12";
NET "LEDs<7>" LOC = "P11";

