Joe Richardson
Andrew Fitzgerald

Tutorial

1. Follow the following hyperlink to get the version of picoblaze for the Spartan 111
FPGA: http://www.xilinx.com/products/ipcenter/picoblaze-VE-S2.htm

Language | Documentation | Downloads | ContactUs
2 XILINX'

Sign in to access account

|Enter Keyward/Part # Search

Advanced Search

Product & Services

Silicon Devices | Design Teols | Intellectual Froperty | Boards & Kits | Training | Services | Third Party Alliances |

Home : Product & Services : Intellectusl Property

PicoBlaze Processor for Virtex/Virtex-E and Spartan-lllllIE FPGAs
2: / v Product Info
: This version of PicoBlaze™ Processor is designed for Virex™,
| B | Download wirtex-E, Spartan™-|l and Spartan-IE FPGAS. It has a 16-bit Documentation
instruction, 16 general purpose 8-hit registers, and 15-entry stack. > PicoBlaze Product Brief

(FOF)
Product Type: Key Features > PicoBlaze 8-Bit
Care » General Purpose Registers Microcontrallar Far
Reference Design > Arithmetic Logic Unit (ALY Winex-E and Spartan-INIE
> Flags/Frogram Flow Control Devices (PDF)
» Reset
* InputiOutput Device Family Support
» Interrupt > Spartan-IIE
* Spartan-ll
> irtex
» Virex-E

Jobs | Ewents | Webcasts | Mews | Investors | Feedback | Legal | Sitemap |
1994-2008 Xilinx, Inc. All Rights Reserved.

*Note: You will need a Xilinx user account. It’s freeto create and will allow you access
to the download area. You will have to fill out abrief survey regarding your usage of
picoblaze as well.

2. Proceed to the picoblaze lounge next. It will be alink provided to you after
completing the above.


http://www.xilinx.com/products/ipcenter/picoblaze-VE-S2.htm

3. Download the resource files for the Spartan 111 FPGA.

PicoBlaze Lounge

‘Welcome to the PicoBlaze™ Lounge. This site provides you with access to
the latest PicoBlaze reference design files. Please remember that the
content ofthis site is covered by the Xiling Reference Design License
agreement and should he treated as such. You may now hrowse and
download the latest PicoBlaze reference design files.

PicoBlaze for Spartan™.

3 pownload design files MBI

irtex™ -4, Virtex-ll and Virtex-ll Pro FPGAs

PicoBlaze for Virtex, Virtex-E, Spartan-ll and Spartan-lE FPGAs
@ Download design files

PicoBlaze for Virtex-Il, Virtex-ll Pro FPGAs
@ Download design files

PicoBlaze for CoolRunner ™.l CPLDs

@ Download design files

4. Once you' ve extracted the zip file to some rewritable directory on your account, the
file containing the picoblaze processor is KPCSM 3.vhd specifically. Thisfile should
then be included in your Xilinx project.

5. The next step would be to create your assembly language file that will be converted
into a.vhd file to be included in your Xilinx project as well.

Sample Assembly language file to read from the switches and display on the LEDs.

: switches DSIN $00
; buttons DSIN $01
: LEDS DSOUT $02
;segments DSOUT $03

INPUT 0,00
OUTPUT 0,02
JUMP 000

Note: The comments (; denotes a commented line in assembly) at the beginning of the
file should be uncommented when using the picoblaze IDE included with the downloaded
files. Please see

http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze user resources.ht
m for more information regarding the I1SA.



http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.ht

6. The next step is to transform the assembly code into a*.vhd file that can then be added
into your Xilinx project to act as an instruction ROM. The KCPSM3.EXE included with
the Xilinx picoblaze files is the assembler that performs this step. To run the assembler,
navigate to your working directory with the command prompt, then enter

%location_of _picoblaze extraction%/KPCSM3.exe followed by the name of your
assembly language file. The location extraction directory should contain KCPSM 3.exe,
ROM_form.coe, ROM_form.vhd, and your assembly language file(.psm).

W WINDOWS  system32 . cmd.exe

:sfinalProjectsStroudsworking *KCPSM3 . EXE tutorial.

*Note: If the temporary directory on your current machine is not writable, you will see
the following error:
=

CAWINDOWS systern32icmd . exe - KCPSM3.EXE kutarial psm
CADOCUME~13afFES54H LOCALS~1Temp). A temporary file needed For initialization could not be created or could not be written to. Make sure that the
directory path exists, and disk space is available, Choose 'Close’ to terminate the applicakion,

Ignore |

and your assembly language file WILL NOT be converted. This can be resolved by
asking the current lab manager to make the Windows temporary directory writable.

7. After the file completes, the assembler creates many files. These files are shown
below and are not highlighted.

-loix

File Edt ‘iew Favorites Tools  Help | ;ﬂ"

@Back &l 'ﬂ' | ./ | Search ||~ Felders | v

Address [ 2:finalProject) StroudiworkingiMew Folder LI a (a0

E| constant.TxT [Hpassaoar  [E TUTORIAL.COE
TIEEEE [Eeassaoar [ TUTORIALFMT
%] LABELS. THT =passs.oaT  |E| TUTORIAL.LOG

kukarial. psm

e TUTORIAL. YHD

PASS1.DAT [=]RoM_Form, coe
PASS2. DAT ROM_farm.vhd

The created file, in our case tutorial.vhd, can then be added into your Xilinx project.

8. Within your Xilinx project, you will need a new top level file to connect the picoblaze
processor with your newly generated program ROM from your assembly language file.
is can be done with simple port maps, as shown below:

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhkhhkhkhhkhhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkkkkkkkx%x%x

-- Top level VHDL for Pl COBLAZE TEST for ELEC4200
l'ibrary | EEE;

use | EEE. STD_LOG C 1164. ALL;

use | EEE. STD LCd C_ARI TH. ALL;

use | EEE. STD_LOd C_UNSI GNED. ALL;



entity picotest is
Port ( switch
LEDS :
clk :
end pi cotest;
archi tecture Behavi oral

es : in std_logic_vector(7 dowmnto 0);
out std_logic_vector(7 downto 0);

in std_logic);

of picotest is

-- declaration of KCPSMB (al ways use this declaration to call up PicoBl aze
core)
conponent kcpsn8

Port ( address : out std_logic_vector(9 downto 0);

instruction : in std_|l ogic_vector(17 downto 0);

port _id : out std_logic_vector(7 downto 0);
wite_strobe : out std_logic;

out _port out std_logic_vector(7 dowto 0);

read_strobe :

i n_port
i nterrupt

interrupt_ack :

reset

clk :

out std_l ogic;

in std_|logic_vector(7 dowmnto 0);

in std_| ogic;
out std_l ogic;
in std_| ogic;
in std_logic);

end conponent;
-- declaration of programnenory (here you will specify the entity nane as your
. psm prefix name)
conponent tutori al
Port ( address : in std_l ogic_vector(9 downto 0);
instruction : out std_logic_vector(17 downto 0);
clk : in std_logic);
end conponent;
-- Signals used to connect PicoBlaze core to programnenory and 1/ O | ogic
signal address : std_l ogic_vector(9 downto 0);
signal instruction std_l ogi c_vector(17 downto 0);
signal port_id std_l ogic_vector(7 downto 0);
signal out_port std_l ogic_vector(7 downto 0);
signal in_port std_l ogic_vector(7 downto 0);
signal wite_strobe std_| ogic;
signal read_strobe std_| ogic;
signal interrupt_ack : std_l ogic;
-- the following 2 inputs are assigend inactive values since they are unused in
t his exanpl e
signal reset std_logic :
signal interrupt std_logic :
-- Start of circuit description
begin
-- Instantiating the PicoBlaze core
processor: kcpsnB
port map( address => address,
i nstruction => instruction,
port_id => port_id,
wite_strobe => wite_strobe,
out _port => out_port,
read_strobe => read_strobe,
in_port =>in_port,
interrupt => interrupt,
i nterrupt _ack => interrupt_ack,
reset => reset,
clk => clk);
-- Instantiating the program nenory
program tutorial
port map(

=0
=0

address => address,
i nstruction => instruction,
clk => clk);

-- Connect Input to PicoBlaze



process( port_id, clk, read_strobe )

begin
if clk'event and clk="1" then
if read_strobe="1" then
case port_id is
when x"00" => in_port <= sw tches;
when x"01" => in_port <= "00000" & buttons(3
downto 1);
when ot hers => nul | ;
end case;
end if;
end if;

end process;

- Connect CQutput from Pi coBl aze

process( port_id, clk, wite_strobe )
begin
if clk'event and clk="1" then
if wite_strobe="1" then
case port_id is
when x"02" => LEDs <= out_port;
when x"03" => ssegVal <= out_port(3 downto 0);
when ot hers => nul | ;
end case;
end if;
end if;
end process;

end Behavi oral ;
kkhkkhkkhkhkhkkhkhkhkhhkhkhhkdhkhhkdhkhhdhkhhdhkhhdhkhhdhkhhdhkhhdhkhhdhkhhdhhdhhhdhhhdhhhdhhhdhkhhdkhhdddkdddxd,x*x%

9. Add in your user constraintsto map to your chosen inputs and outputs.

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkkkkkkkx*x%x

NET

NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "

NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "

"clk" LOC ="T9"

switches<0>" LOC ="F12";
switches<1>" LOC ="G12";
switches<2>" LOC ="H14";
switches<3>" LOC ="H13";
switches<4>" LOC ="J14";

switches<5>" LOC ="J13";

switches<6>" LOC ="K14";
switches<7>" LOC ="K13";

LEDs<0>" LOC ="K12";
LEDs<1>" LOC ="P14",
LEDs<2>" LOC ="L12"%
LEDs<3>" LOC ="N14";
LEDs<4>" LOC ="P13",
LEDs<5>" LOC ="N12";
LEDs<6>" LOC ="P12",
LEDs<7>" LOC ="P11",



NET "buttons<0>" LOC="M13";
NET "buttons<1>" LOC="M14";
NET "buttons<2>" LOC ="L13";
NET "buttons<3>" LOC ="L14";

NET "segments<0>" LOC ="P16";
NET "segments<1>" LOC ="N16";
NET "segments<2>" LOC ="F13";
NET "segments<3>" LOC ="R16";
NET "segments<4>" LOC = "P15",
NET "segments<56>" LOC ="N15";
NET "segments<6>" LOC ="G13";
NET "segments<7>" LOC ="E14";

NET "anodes<0>" LOC="D14";
NET "anodes<1>" LOC ="G14";
NET "anodes<2>"  LOC ="F14";
NET "anodes<3>" LOC="E13";

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhkhhkhhhkhhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkhkkkkkk,%x%x

10. Generate your programming file and you’ re done.

Note: You can change address for any of the inputs/outputs by changing the port_id
values in the case statements.

Debuqgging PicoBlaze programs

Our preferred way to debug PicoBlaze programs was to make use of the FPGA LEDs and
the seven segment display. So if you needed to seethe value of some variable just dump
it to the seven segment display. If seven digits wasn’t enough we added a windowing
feature to our display so one button would scroll forward and one would go backwards.
The size of the buffer for the seven segment display is a generic value that can easily be
changed to be larger or smaller, depending on the needs of the user. Since our project
makes use of states, we decided to use the LEDsto help debug that. So each LED
corresponded to a state and the one that was lit was the current gate. After we were
assured this was working properly, we removed the LED correspondence.

A program called ChipScope is rumored to be able to debug PicoBlaze programs, but
there isn't much information out there about that just yet. On a question and answer site
some one asked how to debug PicoBlaze programs with ChipScope and here was the
answer. “If you dump the address, instruction, and cpu_clock signals into Chipscope and
then print out the .log file, it is quite easy to get Chipscope to trigger on any instruction
that you want.” Hereisalink to that page
http://forums.xilinx.com/xInx/board/message”board.id=PicoBlaze& thread.id=101



http://forums.xilinx.com/xlnx/board/message?board.id=PicoBlaze&thread.id=101

| nter facing between PicoBlaze and FPGA hardwar e

The interfacing between PicoBlaze and FPGA hardware is very simple. The inputs and
outputsto PicoBlaze must be mapped to hardware pins. Below is a simple example of
this.

Section of PicoBlaze program

: switches DSIN $00

: buttons DSIN $01

: LEDS DSOUT $02
;segments DSOUT $03

I NPUT sO, 01
QUTPUT sO0, 03
JUWVP 000
Section of VHDL
entity picotest is Port (
switches : in std_logic_vector(7 dowmnto 0);

LEDS : out std_logic_vector(7 downto 0);
clk : in std_logic);
end pi cot est;

-- Connect Input to PicoBl aze
process( port_id, clk, read_strobe )
begin
if clk'event and clk="1" then
if read_strobe="1" then
case port_idis
when x"00" => in_port <= swi tches;
when x"01" => in_port <= "00000" & buttons(3 downto 1);
when others => nul | ;
end case;
end if;
end if;
end process;

-- Connect Qutput from PicoBl aze
process( port_id, clk, wite_strobe )
begin
if clk'event and clk="1" then
if wite_strobe='"1" then
case port_id is
when x"02" => LEDs <= out_port;
when x"03" => ssegVal <= out_port(3 downto 0);
when others => nul | ;
end case;
end if;
end if;
end process;

Section of Congtraint file

NET "switches<O0>" LOC ="F12";
NET "switches<1>" LOC="G12";
NET "switches<2>" LOC ="H14";




NET "
NET "
NET "
NET "
NET "

NET "
NET "
NET "
NET "
NET "
NET "
NET "
NET "

switches<3>"
switches<4>"
switches<5>"
switches<6>"
switches<7>"

LEDs<0>"
LEDs<1>"
LEDs<2>"
LEDs<3>"
LEDs<4>"
LEDs<5>"
LEDs<6>"
LEDs<7>"

LOC="
LOC="
LOC="
LOC="
LOC="

LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="
LOC="

H13";
Ji4";
J13";
K14";
K13";

K12";
P14";
L12";
N14";
P13";
N12":
P12":
P11";



